10,697 research outputs found
Pan-STARRS1 Discovery of Two Ultraluminous Supernovae at z ≈ 0.9
We present the discovery of two ultraluminous supernovae (SNe) at z ≈ 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M_(bol) ≈ –22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) × 10^(51) erg. We find photospheric velocities of 12,000-19,000 km s^(–1) with no evidence for deceleration measured across ~3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star
Supernova 2009kf: An Ultraviolet Bright Type IIP Supernova Discovered with Pan-STARRS 1 and GALEX
We present photometric and spectroscopic observations of a luminous Type IIP Supernova (SN) 2009kf discovered by the Pan-STARRS 1 (PS1) survey and also detected by the Galaxy Evolution Explorer. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with an absolute magnitude of M_V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000 km s^(-1) at 61 days after discovery which is extremely high for a Type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modeled with a blackbody with a hot effective temperature (T ~ 16,000 K) and a large radius (R ~ 1 × 10^(15) cm). The bright bolometric and NUV luminosity, the light curve peak and plateau duration, the high velocities, and temperatures suggest that 2009kf is a Type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium. UV-bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M_(NUV) = -21.5 ± 0.5 mag suggests such SNe could be discovered out to z ~ 2.5 in the PS1 survey
Improved electromechanical master-slave manipulator
Electric master-slave manipulator uses force multiplication and allows the operator to remotely control the slave arm. Both the master and slave arms execute seven distinct motions by a specially designed force-reflecting servo having a one to one correspondence between the motion at the master and slave
Apparent hysteresis in a driven system with self-organized drag
Interaction between extended defects and impurities lies at the heart of many
physical phenomena in materials science. Here we revisit the ubiquitous problem
of the driven motion of an extended defect in a field of mobile impurities,
which self-organize to cause drag on the defect. Under a wide range of external
conditions (e.g. drive), the defect undergoes a transition from slow to fast
motion. This transition is commonly hysteretic: the defect either moves slow or
fast, depending on the initial condition. We explore such hysteresis via a
kinetic Monte Carlo spin simulation combined with computational
coarse-graining. Obtaining bifurcation diagrams (stable and unstable branches),
we map behavior regimes in parameter space. Estimating fast-slow switching
times, we determine whether a simulation or experiment will exhibit hysteresis
depending on observation conditions. We believe our approach is applicable to
quantifying hysteresis in a wide range of physical contexts.Comment: 11 pages (preprint format), 4 color figures in separate file
A Reanalysis of the Hydrodynamic Theory of Fluid, Polar-Ordered Flocks
I reanalyze the hydrodynamic theory of fluid, polar ordered flocks. I find
new linear terms in the hydrodynamic equations which slightly modify the
anisotropy, but not the scaling, of the damping of sound modes. I also find
that the nonlinearities allowed {\it in equilibrium} do not stabilize long
ranged order in spatial dimensions ; in accord with the Mermin-Wagner
theorem. Nonequilibrium nonlinearities {\it do} stabilize long ranged order in
, as argued by earlier work. Some of these were missed by earlier work; it
is unclear whether or not they change the scaling exponents in .Comment: 6 pages, no figures. arXiv admin note: text overlap with
arXiv:0909.195
Morphology and scaling in the noisy Burgers equation: Soliton approach to the strong coupling fixed point
The morphology and scaling properties of the noisy Burgers equation in one
dimension are treated by means of a nonlinear soliton approach based on the
Martin-Siggia-Rose technique. In a canonical formulation the strong coupling
fixed point is accessed by means of a principle of least action in the
asymptotic nonperturbative weak noise limit. The strong coupling scaling
behaviour and the growth morphology are described by a gas of nonlinear soliton
modes with a gapless dispersion law and a superposed gas of linear diffusive
modes with a gap. The dynamic exponent is determined by the gapless soliton
dispersion law, whereas the roughness exponent and a heuristic expression for
the scaling function are given by the form factor in a spectral representation
of the interface slope correlation function. The scaling function has the form
of a Levy flight distribution.Comment: 5 pages, Revtex file, submitted to Phys. Rev. Let
Finite Temperature Spectral Densities of Momentum and R-Charge Correlators in Yang Mills Theory
We compute spectral densities of momentum and R-charge correlators in thermal
Yang Mills at strong coupling using the AdS/CFT correspondence. For
and smaller, the spectral density differs markedly from
perturbation theory; there is no kinetic theory peak. For large , the
spectral density oscillates around the zero-temperature result with an
exponentially decreasing amplitude. Contrast this with QCD where the spectral
density of the current-current correlator approaches the zero temperature
result like . Despite these marked differences with perturbation
theory, in Euclidean space-time the correlators differ by only from
the free result. The implications for Lattice QCD measurements of transport are
discussed.Comment: 18 pages, 3 figure
Breakdown of Hydrodynamic Transport Theory in the Ordered Phase of Helimagnets
It is shown that strong fluctuations preclude a hydrodynamic description of
transport phenomena in helimagnets, such as MnSi, at T>0. This breakdown of
hydrodynamics is analogous to the one in chiral liquid crystals. Mode-mode
coupling effects lead to infinite renormalizations of various transport
coefficients, and the actual macroscopic description is nonlocal. At T=0 these
effects are weakened due to the fluctuation-dissipation theorem, and the
renormalizations remain finite. Observable consequences of these results, as
manifested in the neutron scattering cross-section, are discussedComment: 4pp., 1 eps figur
Spin hydrodynamics in the S = 1/2 anisotropic Heisenberg chain
We study the finite-temperature dynamical spin susceptibility of the
one-dimensional (generalized) anisotropic Heisenberg model within the
hydrodynamic regime of small wave vectors and frequencies. Numerical results
are analyzed using the memory function formalism with the central quantity
being the spin-current decay rate gamma(q,omega). It is shown that in a generic
nonintegrable model the decay rate is finite in the hydrodynamic limit,
consistent with normal spin diffusion modes. On the other hand, in the gapless
integrable model within the XY regime of anisotropy Delta < 1 the behavior is
anomalous with vanishing gamma(q,omega=0) proportional to |q|, in agreement
with dissipationless uniform transport. Furthermore, in the integrable system
the finite-temperature q = 0 dynamical conductivity sigma(q=0,omega) reveals
besides the dissipationless component a regular part with vanishing
sigma_{reg}(q=0,omega to 0) to 0
Dynamic correlations in stochastic rotation dynamics
The dynamic structure factor, vorticity and entropy density dynamic
correlation functions are measured for Stochastic Rotation Dynamics (SRD), a
particle based algorithm for fluctuating fluids. This allows us to obtain
unbiased values for the longitudinal transport coefficients such as thermal
diffusivity and bulk viscosity. The results are in good agreement with earlier
numerical and theoretical results, and it is shown for the first time that the
bulk viscosity is indeed zero for this algorithm. In addition, corrections to
the self-diffusion coefficient and shear viscosity arising from the breakdown
of the molecular chaos approximation at small mean free paths are analyzed. In
addition to deriving the form of the leading correlation corrections to these
transport coefficients, the probabilities that two and three particles remain
collision partners for consecutive time steps are derived analytically in the
limit of small mean free path. The results of this paper verify that we have an
excellent understanding of the SRD algorithm at the kinetic level and that
analytic expressions for the transport coefficients derived elsewhere do indeed
provide a very accurate description of the SRD fluid.Comment: 33 pages including 16 figure
- …
