364 research outputs found

    Aspects of the Noisy Burgers Equation

    Full text link
    The noisy Burgers equation describing for example the growth of an interface subject to noise is one of the simplest model governing an intrinsically nonequilibrium problem. In one dimension this equation is analyzed by means of the Martin-Siggia-Rose technique. In a canonical formulation the morphology and scaling behavior are accessed by a principle of least action in the weak noise limit. The growth morphology is characterized by a dilute gas of nonlinear soliton modes with gapless dispersion law with exponent z=3/2 and a superposed gas of diffusive modes with a gap. The scaling exponents and a heuristic expression for the scaling function follow from a spectral representation.Comment: 23 pages,LAMUPHYS LaTeX-file (Springer), 13 figures, and 1 table, to appear in the Proceedings of the XI Max Born Symposium on "Anomalous Diffusion: From Basics to Applications", May 20-24, 1998, Ladek Zdroj, Polan

    Domain wall mobility in nanowires: transverse versus vortex walls

    Full text link
    The motion of domain walls in ferromagnetic, cylindrical nanowires is investigated numerically by solving the Landau-Lifshitz-Gilbert equation for a classical spin model in which energy contributions from exchange, crystalline anisotropy, dipole-dipole interaction, and a driving magnetic field are considered. Depending on the diameter, either transverse domain walls or vortex walls are found. The transverse domain wall is observed for diameters smaller than the exchange length of the given material. Here, the system behaves effectively one-dimensional and the domain wall mobility agrees with a result derived for a one-dimensional wall by Slonczewski. For low damping the domain wall mobility decreases with decreasing damping constant. With increasing diameter, a crossover to a vortex wall sets in which enhances the domain wall mobility drastically. For a vortex wall the domain wall mobility is described by the Walker-formula, with a domain wall width depending on the diameter of the wire. The main difference is the dependence on damping: for a vortex wall the domain wall mobility can be drastically increased for small values of the damping constant up to a factor of 1/α21/\alpha^2.Comment: 5 pages, 6 figure

    Marginal Pinning of Quenched Random Polymers

    Full text link
    An elastic string embedded in 3D space and subject to a short-range correlated random potential exhibits marginal pinning at high temperatures, with the pinning length Lc(T)L_c(T) becoming exponentially sensitive to temperature. Using a functional renormalization group (FRG) approach we find Lc(T)exp[(32/π)(T/Tdp)3]L_c(T) \propto \exp[(32/\pi)(T/T_{\rm dp})^3], with TdpT_{\rm dp} the depinning temperature. A slow decay of disorder correlations as it appears in the problem of flux line pinning in superconductors modifies this result, lnLc(T)T3/2\ln L_c(T)\propto T^{3/2}.Comment: 4 pages, RevTeX, 1 figure inserte

    Solitons in the noisy Burgers equation

    Full text link
    We investigate numerically the coupled diffusion-advective type field equations originating from the canonical phase space approach to the noisy Burgers equation or the equivalent Kardar-Parisi-Zhang equation in one spatial dimension. The equations support stable right hand and left hand solitons and in the low viscosity limit a long-lived soliton pair excitation. We find that two identical pair excitations scatter transparently subject to a size dependent phase shift and that identical solitons scatter on a static soliton transparently without a phase shift. The soliton pair excitation and the scattering configurations are interpreted in terms of growing step and nucleation events in the interface growth profile. In the asymmetrical case the soliton scattering modes are unstable presumably toward multi soliton production and extended diffusive modes, signalling the general non-integrability of the coupled field equations. Finally, we have shown that growing steps perform anomalous random walk with dynamic exponent z=3/2 and that the nucleation of a tip is stochastically suppressed with respect to plateau formation.Comment: 11 pages Revtex file, including 15 postscript-figure

    How strongly do word reading times and lexical decision times correlate? Combining data from eye movement corpora and megastudies

    No full text
    We assess the amount of shared variance between three measures of visual word recognition latencies: eye movement latencies, lexical decision times and naming times. After partialling out the effects of word frequency and word length, two well-documented predictors of word recognition latencies, we see that 7-44% of the variance is uniquely shared between lexical decision times and naming times, depending on the frequency range of the words used. A similar analysis of eye movement latencies shows that the percentage of variance they uniquely share either with lexical decision times or with naming times is much lower. It is 5 – 17% for gaze durations and lexical decision times in studies with target words presented in neutral sentences, but drops to .2% for corpus studies in which eye movements to all words are analysed. Correlations between gaze durations and naming latencies are lower still. These findings suggest that processing times in isolated word processing and continuous text reading are affected by specific task demands and presentation format, and that lexical decision times and naming times are not very informative in predicting eye movement latencies in text reading once the effect of word frequency and word length are taken into account. The difference between controlled experiments and natural reading suggests that reading strategies and stimulus materials may determine the degree to which the immediacy-of-processing assumption and the eye-mind assumption apply. Fixation times are more likely to exclusively reflect the lexical processing of the currently fixated word in controlled studies with unpredictable target words rather than in natural reading of sentences or texts

    Update statistics in conservative parallel discrete event simulations of asynchronous systems

    Full text link
    We model the performance of an ideal closed chain of L processing elements that work in parallel in an asynchronous manner. Their state updates follow a generic conservative algorithm. The conservative update rule determines the growth of a virtual time surface. The physics of this growth is reflected in the utilization (the fraction of working processors) and in the interface width. We show that it is possible to nake an explicit connection between the utilization and the macroscopic structure of the virtual time interface. We exploit this connection to derive the theoretical probability distribution of updates in the system within an approximate model. It follows that the theoretical lower bound for the computational speed-up is s=(L+1)/4 for L>3. Our approach uses simple statistics to count distinct surface configuration classes consistent with the model growth rule. It enables one to compute analytically microscopic properties of an interface, which are unavailable by continuum methods.Comment: 15 pages, 12 figure

    Towards a Simple Model of Compressible Alfvenic Turbulence

    Get PDF
    A simple model collisionless, dissipative, compressible MHD (Alfvenic) turbulence in a magnetized system is investigated. In contrast to more familiar paradigms of turbulence, dissipation arises from Landau damping, enters via nonlinearity, and is distributed over all scales. The theory predicts that two different regimes or phases of turbulence are possible, depending on the ratio of steepening to damping coefficient (m_1/m_2). For strong damping (|m_1/m_2|<1), a regime of smooth, hydrodynamic turbulence is predicted. For |m_1/m_2|>1, steady state turbulence does not exist in the hydrodynamic limit. Rather, spikey, small scale structure is predicted.Comment: 6 pages, one figure, REVTeX; this version to be published in PRE. For related papers, see http://sdphpd.ucsd.edu/~medvedev/papers.htm

    Non-Linear Stochastic Equations with Calculable Steady States

    Full text link
    We consider generalizations of the Kardar--Parisi--Zhang equation that accomodate spatial anisotropies and the coupled evolution of several fields, and focus on their symmetries and non-perturbative properties. In particular, we derive generalized fluctuation--dissipation conditions on the form of the (non-linear) equations for the realization of a Gaussian probability density of the fields in the steady state. For the amorphous growth of a single height field in one dimension we give a general class of equations with exactly calculable (Gaussian and more complicated) steady states. In two dimensions, we show that any anisotropic system evolves on long time and length scales either to the usual isotropic strong coupling regime or to a linear-like fixed point associated with a hidden symmetry. Similar results are derived for textural growth equations that couple the height field with additional order parameters which fluctuate on the growing surface. In this context, we propose phenomenological equations for the growth of a crystalline material, where the height field interacts with lattice distortions, and identify two special cases that obtain Gaussian steady states. In the first case compression modes influence growth and are advected by height fluctuations, while in the second case it is the density of dislocations that couples with the height.Comment: 9 pages, revtex

    Shear-induced quench of long-range correlations in a liquid mixture

    Full text link
    A static correlation function of concentration fluctuations in a (dilute) binary liquid mixture subjected to both a concentration gradient and uniform shear flow is investigated within the framework of fluctuating hydrodynamics. It is shown that a well-known c2/k4|\nabla c|^2/k^4 long-range correlation at large wave numbers kk crosses over to a weaker divergent one for wave numbers satisfying k<(γ˙/D)1/2k<(\dot{\gamma}/D)^{1/2}, while an asymptotic shear-controlled power-law dependence is confirmed at much smaller wave numbers given by k(γ˙/ν)1/2k\ll (\dot{\gamma}/\nu)^{1/2}, where cc, γ˙\dot{\gamma}, DD and ν\nu are the mass concentration, the rate of the shear, the mass diffusivity and the kinematic viscosity of the mixture, respectively. The result will provide for the first time the possibility to observe the shear-induced suppression of a long-range correlation experimentally by using, for example, a low-angle light scattering technique.Comment: 8pages, 2figure

    Renormalization group study of one-dimensional systems with roughening transitions

    Full text link
    A recently introduced real space renormalization group technique, developed for the analysis of processes in the Kardar-Parisi-Zhang universality class, is generalized and tested by applying it to a different family of surface growth processes. In particular, we consider a growth model exhibiting a rich phenomenology even in one dimension. It has four different phases and a directed percolation related roughening transition. The renormalization method reproduces extremely well all the phase diagram, the roughness exponents in all the phases and the separatrix among them. This proves the versatility of the method and elucidates interesting physical mechanisms.Comment: Submitted to Phys. Rev.
    corecore