834 research outputs found

    Nonstatistical dynamics on potentials exhibiting reaction path bifurcations and valley-ridge inflection points

    Get PDF
    We study reaction dynamics on a model potential energy surface exhibiting post-transition state bifurcation in the vicinity of a valley ridge inflection point. We compute fractional yields of products reached after the VRI region is traversed, both with and without dissipation. It is found that apparently minor variations in the potential lead to significant changes in the reaction dynamics. Moreover, when dissipative effects are incorporated, the product ratio depends in a complicated and highly non-monotonic fashion on the dissipation parameter. Dynamics in the vicinity of the VRI point itself play essentially no role in determining the product ratio, except in the highly dissipative regime.Comment: 33 pages, 10 figures, corrected the author name in reference [6

    Isomerization dynamics of a buckled nanobeam

    Full text link
    We analyze the dynamics of a model of a nanobeam under compression. The model is a two mode truncation of the Euler-Bernoulli beam equation subject to compressive stress. We consider parameter regimes where the first mode is unstable and the second mode can be either stable or unstable, and the remaining modes (neglected) are always stable. Material parameters used correspond to silicon. The two mode model Hamiltonian is the sum of a (diagonal) kinetic energy term and a potential energy term. The form of the potential energy function suggests an analogy with isomerisation reactions in chemistry. We therefore study the dynamics of the buckled beam using the conceptual framework established for the theory of isomerisation reactions. When the second mode is stable the potential energy surface has an index one saddle and when the second mode is unstable the potential energy surface has an index two saddle and two index one saddles. Symmetry of the system allows us to construct a phase space dividing surface between the two "isomers" (buckled states). The energy range is sufficiently wide that we can treat the effects of the index one and index two saddles in a unified fashion. We have computed reactive fluxes, mean gap times and reactant phase space volumes for three stress values at several different energies. In all cases the phase space volume swept out by isomerizing trajectories is considerably less than the reactant density of states, proving that the dynamics is highly nonergodic. The associated gap time distributions consist of one or more `pulses' of trajectories. Computation of the reactive flux correlation function shows no sign of a plateau region; rather, the flux exhibits oscillatory decay, indicating that, for the 2-mode model in the physical regime considered, a rate constant for isomerization does not exist.Comment: 42 pages, 6 figure

    Attosecond electron thermalization by laser-driven electron recollision in atoms

    Get PDF
    Nonsequential multiple ionization of atoms in intense laser fields is initiated by a recollision between an electron, freed by tunneling, and its parent ion. Following recollision, the initial electron shares its energy with several bound electrons. We use a classical model based on rapid electron thermalization to interpret recent experiments. For neon, good agreement with the available data is obtained with an upper bound of 460 attoseconds for the thermalization time.Comment: 5 pages revtex and 4 figures (eps files

    Adaptive walks on time-dependent fitness landscapes

    Full text link
    The idea of adaptive walks on fitness landscapes as a means of studying evolutionary processes on large time scales is extended to fitness landscapes that are slowly changing over time. The influence of ruggedness and of the amount of static fitness contributions are investigated for model landscapes derived from Kauffman's NKNK landscapes. Depending on the amount of static fitness contributions in the landscape, the evolutionary dynamics can be divided into a percolating and a non-percolating phase. In the percolating phase, the walker performs a random walk over the regions of the landscape with high fitness.Comment: 7 pages, 6 eps-figures, RevTeX, submitted to Phys. Rev.

    Star Architecture as Socio-Material Assemblage

    Get PDF
    Taking inspiration from new materialism and assemblage, the chapter deals with star architects and iconic buildings as socio-material network effects that do not pre-exist action, but are enacted in practice, in the materiality of design crafting and city building. Star architects are here conceptualized as part of broader assemblages of actors and practices ‘making star architecture’ a reality, and the buildings they design are considered not just as unique and iconic objects, but dis-articulated as complex crafts mobilizing skills, technologies, materials, and forms of knowledge not necessarily ascribable to architecture. Overcoming narrow criticism focusing on the symbolic order of icons as unique creations and alienated repetitions of capitalist development, the chapter’s main aim is to widen the scope of critique by bridging culture and economy, symbolism and practicality, making star architecture available to a broad, fragmented arena of (potential) critics, unevenly equipped with critical tools and differentiated experiences

    Toleration, Reasonableness, and Power

    Get PDF
    This chapter explores Rainer Forst’s justification-centric view of nondomination toleration. This view places an idea of equal respect and a corresponding requirement of reciprocal and general justification at the core of non-domination toleration. After reconstructing this view, this chapter addresses two issues. First, even if this idea of equal respect requires the limits of non-domination toleration to be drawn in a manner that is equally justifiable to all affected people, equal justifiability should not be understood in terms of Forst’s requirement of reciprocal and general acceptability. Second, for the equal justifiability of relevant constraints to ensure non-domination outcomes, discursive equality must be understood in substantive, purchase-sensitive terms. This means that a justification-centric view of non-domination toleration stands or falls with the participation value of what it regards as the standards of justification. This places reasonably contested matters of value at the heart of such views

    Optical mapping as a routine tool for bacterial genome sequence finishing

    Get PDF
    Background: In sequencing the genomes of two Xenorhabdus species, we encountered a large number of sequence repeats and assembly anomalies that stalled finishing efforts. This included a stretch of about 12 Kb that is over 99.9% identical between the plasmid and chromosome of X. nematophila. Results: Whole genome restriction maps of the sequenced strains were produced through optical mapping technology. These maps allowed rapid resolution of sequence assembly problems, permitted closing of the genome, and allowed correction of a large inversion in a genome assembly that we had considered finished. Conclusion: Our experience suggests that routine use of optical mapping in bacterial genome sequence finishing is warranted. When combined with data produced through 454 sequencing, an optical map can rapidly and inexpensively generate an ordered and oriented set of contigs to produce a nearly complete genome sequence assembly

    A Bayesian Approach to the Evolution of Metabolic Networks on a Phylogeny

    Get PDF
    The availability of genomes of many closely related bacteria with diverse metabolic capabilities offers the possibility of tracing metabolic evolution on a phylogeny relating the genomes to understand the evolutionary processes and constraints that affect the evolution of metabolic networks. Using simple (independent loss/gain of reactions) or complex (incorporating dependencies among reactions) stochastic models of metabolic evolution, it is possible to study how metabolic networks evolve over time. Here, we describe a model that takes the reaction neighborhood into account when modeling metabolic evolution. The model also allows estimation of the strength of the neighborhood effect during the course of evolution. We present Gibbs samplers for sampling networks at the internal node of a phylogeny and for estimating the parameters of evolution over a phylogeny without exploring the whole search space by iteratively sampling from the conditional distributions of the internal networks and parameters. The samplers are used to estimate the parameters of evolution of metabolic networks of bacteria in the genus Pseudomonas and to infer the metabolic networks of the ancestral pseudomonads. The results suggest that pathway maps that are conserved across the Pseudomonas phylogeny have a stronger neighborhood structure than those which have a variable distribution of reactions across the phylogeny, and that some Pseudomonas lineages are going through genome reduction resulting in the loss of a number of reactions from their metabolic networks
    • …
    corecore