61 research outputs found

    Precision Higgs Width and Couplings with a High Energy Muon Collider

    Full text link
    The interpretation of Higgs data is typically based on different assumptions about whether there can be additional decay modes of the Higgs or if any couplings can be bounded by theoretical arguments. Going beyond these assumptions requires either a precision measurement of the Higgs width or an absolute measurement of a coupling to eliminate a flat direction in precision fits that occurs when ∣ghVV/ghVVSM∣>1|g_{hVV}/g_{hVV}^{SM}|>1. In this paper we explore how well a high energy muon collider can test Higgs physics without having to make assumptions on the total width of the Higgs. In particular, we investigate off-shell methods for Higgs production used at the LHC and searches for invisible decays of the Higgs to see how powerful they are at a muon collider. We then investigate the theoretical requirements on a model which can exist in such a flat direction. Combining expected Higgs precision with other constraints, the most dangerous flat direction is described by generalized Georgi-Machacek models. We find that by combining direct searches with Higgs precision, a high energy muon collider can robustly test single Higgs precision down to the O(.1%)\mathcal{O}(.1\%) level without having to assume SM Higgs decays. Furthermore, it allows one to bound new contributions to the width at the sub-percent level as well. Finally, we comment on how even in this difficult flat direction for Higgs precision, a muon collider can robustly test or discover new physics in multiple ways. Expanding beyond simple coupling modifiers/EFTs, there is a large region of parameter space that muon colliders can explore for EWSB that is not probed with only standard Higgs precision observables.Comment: 28 pages plus appendices, minor change

    Quantization of Axion-Gauge Couplings and Non-Invertible Higher Symmetries

    Full text link
    We derive model-independent quantization conditions on the axion couplings (sometimes known as the anomaly coefficients) to the Standard Model gauge group [SU(3)×SU(2)×U(1)Y]/Zq[SU(3)\times SU(2)\times U(1)_Y]/\mathbb{Z}_q with q=1,2,3,6q=1,2,3,6. Using these quantization conditions, we prove that any QCD axion model to the right of the E/N=8/3E/N=8/3 line on the gaγγg_{a\gamma\gamma}-mam_a plot must necessarily face the axion domain wall problem in a post-inflationary scenario. We further demonstrate the higher-group and non-invertible global symmetries in the Standard Model coupled to a single axion. These generalized global symmetries lead to universal bounds on the axion string tension and the monopole mass. If axion were discovered in the future, our quantization conditions could be used to constrain the global form of the Standard Model gauge group.Comment: 23+16 pages, 2 figures, 2 table

    Why we should care about movements: Using spatially explicit integrated population models to assess habitat source-sink dynamics

    Get PDF
    Assessing the source-sink status of populations and habitats is of major importance for understanding population dynamics and for the management of natural populations. Sources produce a net surplus of individuals (per capita contribution to the metapopulation > 1) and will be the main contributors for self-sustaining populations, whereas sinks produce a deficit (contribution < 1). However, making these types of assessments is generally hindered by the problem of separating mortality from permanent emigration, especially when survival probabilities as well as moved distances are habitat-specific. To address this long-standing issue, we propose a spatial multi-event integrated population model (IPM) that incorporates habitat-specific dispersal distances of individuals. Using information about local movements, this IPM adjusts survival estimates for emigration outside the study area. Analysing 24 years of data on a farmland passerine (the northern wheatearOenanthe oenanthe), we assessed habitat-specific contributions, and hence the source-sink status and temporal variation of two key breeding habitats, while accounting for habitat- and sex-specific local dispersal distances of juveniles and adults. We then examined the sensitivity of the source-sink analysis by comparing results with and without accounting for these local movements. Estimates of first-year survival, and consequently habitat-specific contributions, were higher when local movement data were included. The consequences from including movement data were sex specific, with contribution shifting from sink to likely source in one habitat for males, and previously noted habitat differences for females disappearing. Assessing the source-sink status of habitats is extremely challenging. We show that our spatial IPM accounting for local movements can reduce biases in estimates of the contribution by different habitats, and thus reduce the overestimation of the occurrence of sink habitats. This approach allows combining all available data on demographic rates and movements, which will allow better assessment of source-sink dynamics and better informed conservation interventions

    Unclear relationships between mean survival rate and its environmental variance in vertebrates

    Get PDF
    Current environmental changes may increase temporal variability of life history traits of species thus affecting their long-term population growth rate and extinction risk. If there is a general relationship between environmental variances (EVs) and mean annual survival rates of species, that relationship could be used as a guideline for analyses of population growth and extinction risk for populations, where data on EVs are missing. For this purpose, we present a comprehensive compilation of 252 EV estimates from 89 species belonging to five vertebrate taxa (birds, mammals, reptiles, amphibians and fish) covering mean annual survival rates from 0.01 to 0.98. Since variances of survival rates are constrained by their means, particularly for low and high mean survival rates, we assessed whether any observed relationship persisted after applying two types of commonly used variance stabilizing transformations: relativized EVs (observed/mathematical maximum) and logit-scaled EVs. With raw EVs at the arithmetic scale, mean-variance relationships of annual survival rates were hump-shaped with small EVs at low and high mean survival rates and higher (and widely variable) EVs at intermediate mean survival rates. When mean annual survival rates were related to relativized EVs the hump-shaped pattern was less distinct than for raw EVs. When transforming EVs to logit scale the relationship between mean annual survival rates and EVs largely disappeared. The within-species juvenile-adult slopes were mainly positive at low (0.5) mean survival rates for raw and relativized variances while these patterns disappeared when EVs were logit transformed. Uncertainties in how to interpret the results of relativized and logit-scaled EVs, and the observed high variation in EV's for similar mean annual survival rates illustrates that extrapolations of observed EVs and tests of life history drivers of survival-EV relationships need to also acknowledge the large variation in these parameters

    Electrostatic Potentials in Supernova Remnant Shocks

    Get PDF
    Recent advances in the understanding of the properties of supernova remnant shocks have been precipitated by the Chandra and XMM X-ray Observatories, and the HESS Atmospheric Cerenkov Telescope in the TeV band. A critical problem for this field is the understanding of the relative degree of dissipative heating/energization of electrons and ions in the shock layer. This impacts the interpretation of X-ray observations, and moreover influences the efficiency of injection into the acceleration process, which in turn feeds back into the thermal shock layer energetics and dynamics. This paper outlines the first stages of our exploration of the role of charge separation potentials in non-relativistic electron-ion shocks where the inertial gyro-scales are widely disparate, using results from a Monte Carlo simulation. Charge density spatial profiles were obtained in the linear regime, sampling the inertial scales for both ions and electrons, for different magnetic field obliquities. These were readily integrated to acquire electric field profiles in the absence of self-consistent, spatial readjustments between the electrons and the ions. It was found that while diffusion plays little role in modulating the linear field structure in highly oblique and perpendicular shocks, in quasi-parallel shocks, where charge separations induced by gyrations are small, and shock-layer electric fields are predominantly generated on diffusive scales.Comment: 7 pages, 2 embedded figures, Accepted for publication in Astrophysics and Space Science, as part of the HEDLA 2006 conference proceeding

    Towards a Muon Collider

    Full text link
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Comment: 118 pages, 103 figure

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum:Towards a muon collider

    Get PDF

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work
    • …
    corecore