442 research outputs found

    Evaluating research: A multidisciplinary approach to assessing research practice and quality

    Get PDF
    AbstractThere are few widely acknowledged quality standards for research practice, and few definitions of what constitutes good research. The overall aim was therefore to describe what constitutes research, and then to use this description to develop a model of research practice and to define concepts related to its quality. The primary objective was to explore such a model and to create a multidisciplinary understanding of the generic dimensions of the quality of research practice. Eight concept modelling working seminars were conducted. A graphic representation of concepts and their relationships was developed to bridge the gap between different disciplines. A concept model of research as a phenomenon was created, which included a total of 18 defined concepts and their relationships. In a second phase four main areas were distilled, describing research practice in a multidisciplinary context: Credible, Contributory, Communicable, and Conforming. Each of these was further specified in a concept hierarchy together with a defined terminology. A comprehensive quality model including 32 concepts, based on the four main areas, was developed for describing quality issues of research practice, where the model of research as a phenomenon was used to define the quality concepts. The quality model may be used for further development of elements, weights and operationalizations related to the quality of research practice in different academic fields

    A Novel Approach for the Assessment of Cities through Ecosystem Integrity

    Get PDF
    To tackle urban heterogeneity and complexity, several indices have been proposed, commonly aiming to provide information for decision-makers. In this study, we propose a novel and customizable procedure for quantifying urban ecosystem integrity. Based on a citywide approach, we developed an easy-to-use index that contrasts physical and biological variables of urban ecosystems with a given reference system. The Urban Ecosystem Integrity Index (UEII) is the sum of the averages from the variables that make up its intensity of urbanization and biological components. We applied the UEII in a Mexican tropical city using land surface temperature, built cover, and the richness of native plants and birds. The overall ecosystem integrity of the city, having montane cloud, tropical dry, and temperate forests as reference systems, was low (−0.34 ± SD 0.32), showing that, beyond its biodiverse greenspace network, the built-up structure highly differs from the ecosystems of reference. The UEII showed to be a flexible and easy-to-calculate tool to evaluate ecosystem integrity for cities, allowing for comparisons between or among cities, as well as the sectors/regions within cities. If used properly, the index could become a useful tool for decision making and resource allocation at a city level

    A Novel Approach for the Assessment of Cities through Ecosystem Integrity

    Get PDF
    To tackle urban heterogeneity and complexity, several indices have been proposed, commonly aiming to provide information for decision-makers. In this study, we propose a novel and customizable procedure for quantifying urban ecosystem integrity. Based on a citywide approach, we developed an easy-to-use index that contrasts physical and biological variables of urban ecosystems with a given reference system. The Urban Ecosystem Integrity Index (UEII) is the sum of the averages from the variables that make up its intensity of urbanization and biological components. We applied the UEII in a Mexican tropical city using land surface temperature, built cover, and the richness of native plants and birds. The overall ecosystem integrity of the city, having montane cloud, tropical dry, and temperate forests as reference systems, was low (−0.34 ± SD 0.32), showing that, beyond its biodiverse greenspace network, the built-up structure highly differs from the ecosystems of reference. The UEII showed to be a flexible and easy-to-calculate tool to evaluate ecosystem integrity for cities, allowing for comparisons between or among cities, as well as the sectors/regions within cities. If used properly, the index could become a useful tool for decision making and resource allocation at a city level

    Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery

    Get PDF
    In this paper we investigate the potential of melt pond fraction retrieval from X-band polarimetric synthetic aperture radar (SAR) on drifting first-year sea ice. Melt pond fractions retrieved from a helicopter-borne camera system were compared to polarimetric features extracted from four dual-polarimetric X-band SAR scenes, revealing significant relationships. The correlations were strongly dependent on wind speed and SAR incidence angle. Co-polarisation ratio was found to be the most promising SAR feature for melt pond fraction estimation at intermediate wind speeds (6. 2 m s−1), with a Spearman's correlation coefficient of 0. 46. At low wind speeds (0. 6 m s−1), this relation disappeared due to low backscatter from the melt ponds, and backscatter VV-polarisation intensity had the strongest relationship to melt pond fraction with a correlation coefficient of −0. 53. To further investigate these relations, regression fits were made both for the intermediate (R2fit = 0. 21) and low (R2fit = 0. 26) wind case, and the fits were tested on the satellite scenes in the study. The regression fits gave good estimates of mean melt pond fraction for the full satellite scenes, with less than 4 % from a similar statistics derived from analysis of low-altitude imagery captured during helicopter ice-survey flights in the study area. A smoothing window of 51 × 51 pixels gave the best reproduction of the width of the melt pond fraction distribution. A considerable part of the backscatter signal was below the noise floor at SAR incidence angles above  ∼  40°, restricting the information gain from polarimetric features above this threshold. Compared to previous studies in C-band, limitations concerning wind speed and noise floor set stricter constraints on melt pond fraction retrieval in X-band. Despite this, our findings suggest new possibilities in melt pond fraction estimation from X-band SAR, opening for expanded monitoring of melt ponds during melt season in the future

    Young and Eccentric: The Quadruple System HD 86588

    Get PDF
    High-resolution spectroscopy and speckle interferometry reveal the young star HD 86588 as a quadruple system with a three-tier hierarchy. The 0.″3 resolved binary A,B with an estimated period around 300 years contains the 8-yr pair Aa,Abc (also potentially resolvable), where Ab,Ac is a double-lined binary with equal components, for which we compute the spectroscopic orbit. Despite the short period of 2.4058 days, the orbit of Ab,Ac is eccentric (e = 0.086 ±0.003). It has a large inclination, but there are no eclipses; only a 4.4 mmag light modulation apparently caused by star spots on the components of this binary is detected with Evryscope. Assuming a moderate extinction of A V = 0.5 mag and a parallax of 5.2 mas, we find that the stars are on or close to the main sequence (age >10 Myr) and their masses are from 1 to 1.3 solar. We measure the strength of the lithium line in the visual secondary B which, together with rotation, suggests that the system is younger than 150 Myr. This object is located behind the extension of the Chamaeleon I dark cloud (which explains extinction and interstellar sodium absorption), but apparently does not belong to it. We propose a scenario where the inner orbit has recently acquired its high eccentricity through dynamical interaction with the outer two components; it is now undergoing rapid tidal circularization on a timescale of ∼1 Myr. Alternatively, the eccentricity could be excited quasi-stationary by the outer component Aa
    • …
    corecore