81 research outputs found
Hybridization of sub-gap states in one-dimensional superconductor/semiconductor Coulomb islands
We present measurements of one-dimensional superconductor-semiconductor
Coulomb islands, fabricated by gate confinement of a two-dimensional InAs
heterostructure with an epitaxial Al layer. When tuned via electrostatic side
gates to regimes without sub-gap states, Coulomb blockade reveals Cooper-pair
mediated transport. When sub-gap states are present, Coulomb peak positions and
heights oscillate in a correlated way with magnetic field and gate voltage, as
predicted theoretically, with (anti) crossings in (parallel) transverse
magnetic field indicating Rashba-type spin-orbit coupling. Overall results are
consistent with a picture of overlapping Majorana zero modes in finite wires
Scaling of Majorana Zero-Bias Conductance Peaks
We report an experimental study of the scaling of zero-bias conductance peaks
compatible with Majorana zero modes as a function of magnetic field, tunnel
coupling, and temperature in one-dimensional structures fabricated from an
epitaxial semiconductor-superconductor heterostructure. Results are consistent
with theory, including a peak conductance that is proportional to tunnel
coupling, saturates at , decreases as expected with field-dependent
gap, and collapses onto a simple scaling function in the dimensionless ratio of
temperature and tunnel coupling.Comment: Accepted in Physical Review Letter
Evidence of topological superconductivity in planar Josephson junctions
Majorana zero modes are quasiparticle states localized at the boundaries of
topological superconductors that are expected to be ideal building blocks for
fault-tolerant quantum computing. Several observations of zero-bias conductance
peaks measured in tunneling spectroscopy above a critical magnetic field have
been reported as experimental indications of Majorana zero modes in
superconductor/semiconductor nanowires. On the other hand, two dimensional
systems offer the alternative approach to confine Ma jorana channels within
planar Josephson junctions, in which the phase difference {\phi} between the
superconducting leads represents an additional tuning knob predicted to drive
the system into the topological phase at lower magnetic fields. Here, we report
the observation of phase-dependent zero-bias conductance peaks measured by
tunneling spectroscopy at the end of Josephson junctions realized on a InAs/Al
heterostructure. Biasing the junction to {\phi} ~ {\pi} significantly reduces
the critical field at which the zero-bias peak appears, with respect to {\phi}
= 0. The phase and magnetic field dependence of the zero-energy states is
consistent with a model of Majorana zero modes in finite-size Josephson
junctions. Besides providing experimental evidence of phase-tuned topological
superconductivity, our devices are compatible with superconducting quantum
electrodynamics architectures and scalable to complex geometries needed for
topological quantum computing.Comment: main text and extended dat
Rectification of electronic heat current by a hybrid thermal diode
We report the realization of an ultra-efficient low-temperature hybrid heat
current rectifier, thermal counterpart of the well-known electric diode. Our
design is based on a tunnel junction between two different elements: a normal
metal and a superconducting island. Electronic heat current asymmetry in the
structure arises from large mismatch between the thermal properties of these
two. We demonstrate experimentally temperature differences exceeding mK
between the forward and reverse thermal bias configurations. Our device offers
a remarkably large heat rectification ratio up to and allows its
prompt implementation in true solid-state thermal nanocircuits and
general-purpose electronic applications requiring energy harvesting or thermal
management and isolation at the nanoscale.Comment: 8 pages, 6 color figure
Relating Andreev Bound States and Supercurrents in Hybrid Josephson Junctions
We investigate superconducting quantum interference devices consisting of two
highly transmissive Josephson junctions coupled by a superconducting loop, all
defined in an epitaxial InAs/Al heterostructure. A novel device design allows
for independent measurements of the Andreev bound state spectrum within the
normal region of a junction and the resulting current-phase relation. We show
that knowledge of the Andreev bound state spectrum alone is enough to derive
the independently measured phase dependent supercurrent. On the other hand, the
opposite relation does not generally hold true as details of the energy
spectrum are averaged out in a critical current measurement. Finally,
quantitative understanding of field dependent spectrum and supercurrent require
taking into account the second junction in the loop and the kinetic inductance
of the epitaxial Al film
Coherent transport through a Majorana island in an Aharonov-Bohm interferometer
Majorana zero modes are leading candidates for topological quantum
computation due to non-local qubit encoding and non-abelian exchange
statistics. Spatially separated Majorana modes are expected to allow
phase-coherent single-electron transport through a topological superconducting
island via a mechanism referred to as teleportation. Here we experimentally
investigate such a system by patterning an elongated epitaxial InAs-Al island
embedded in an Aharonov-Bohm interferometer. With increasing parallel magnetic
field, a discrete sub-gap state in the island is lowered to zero energy
yielding persistent 1e-periodic Coulomb blockade conductance peaks (e is the
elementary charge). In this condition, conductance through the interferometer
is observed to oscillate in a perpendicular magnetic field with a flux period
of h/e (h is Planck's constant), indicating coherent transport of single
electrons through the islands, a signature of electron teleportation via
Majorana modes, could also be observed, suggesting additional non-Majorana
mechanisms for 1e transport through these moderately short wires
Galactic Gamma-Ray Diffuse Emission at TeV energies with HAWC Data
The Galactic gamma-ray diffuse emission (GDE) is emitted by cosmic rays
(CRs), ultra-relativistic protons and electrons, interacting with gas and
electromagnetic radiation fields in the interstellar medium. Here we present
the analysis of TeV diffuse emission from a region of the Galactic Plane over
the range in longitude of , using data collected with
the High Altitude Water Cherenkov (HAWC) detector. Spectral, longitudinal and
latitudinal distributions of the TeV diffuse emission are shown. The radiation
spectrum is compatible with the spectrum of the emission arising from a CR
population with an "index" similar to that of the observed CRs. When comparing
with the \texttt{DRAGON} \textit{base model}, the HAWC GDE flux is higher by
about a factor of two. Unresolved sources such as pulsar wind nebulae and TeV
halos could explain the excess emission. Finally, deviations of the Galactic CR
flux from the locally measured CR flux may additionally explain the difference
between the predicted and measured diffuse fluxes
Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project
In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory
Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre
We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies.</p
- …