42 research outputs found

    Circulating anions usually associated with the Krebs cycle in patients with metabolic acidosis

    Get PDF
    Introduction: Acute metabolic acidosis of non-renal origin is usually a result of either lactic or ketoacidosis, both of which are associated with a high anion gap. There is increasing recognition, however, of a group of acidotic patients who have a large anion gap that is not explained by either keto- or lactic acidosis nor, in most cases, is inappropriate fluid resuscitation or ingestion of exogenous agents the cause. Methods: Plasma ultrafiltrate from patients with diabetic ketoacidosis, lactic acidosis, acidosis of unknown cause, normal anion gap metabolic acidosis, or acidosis as a result of base loss were examined enzymatically for the presence of low molecular weight anions including citrate, isocitrate, α-ketoglutarate, succinate, malate and d-lactate. The results obtained from the study groups were compared with those obtained from control plasma from normal volunteers. Results: In five patients with lactic acidosis, a significant increase in isocitrate (0.71 ± 0.35 mEq l-1), α-ketoglutarate (0.55 ± 0.35 mEq l-1), malate (0.59 ± 0.27 mEq l-1), and d-lactate (0.40 ± 0.51 mEq l-1) was observed. In 13 patients with diabetic ketoacidosis, significant increases in isocitrate (0.42 ± 0.35 mEq l-1), α-ketoglutarate (0.41 ± 0.16 mEq l-1), malate (0.23 ± 0.18 mEq l-1) and d-lactate (0.16 ± 0.07 mEq l-1) were seen. Neither citrate nor succinate levels were increased. Similar findings were also observed in a further five patients with high anion gap acidosis of unknown origin with increases in isocitrate (0.95 ± 0.88 mEq l-1), α-ketoglutarate (0.65 ± 0.20 mEq l-1), succinate (0.34 ± 0.13 mEq l-1), malate (0.49 ± 0.19 mEq l-1) and d-lactate (0.18 ± 0.14 mEq l-1) being observed but not in citrate concentration. In five patients with a normal anion gap acidosis, no increases were observed except a modest rise in d-lactate (0.17 ± 0.14 mEq l-1). Conclusion: The levels of certain low molecular weight anions usually associated with intermediary metabolism were found to be significantly elevated in the plasma ultrafiltrate obtained from patients with metabolic acidosis. Our results suggest that these hitherto unmeasured anions may significantly contribute to the generation of the anion gap in patients with lactic acidosis and acidosis of unknown aetiology and may be underestimated in diabetic ketoacidosis. These anions are not significantly elevated in patients with normal anion gap acidosis

    Understanding lactatemia in human sepsis potential impact for early management

    Get PDF
    Rationale: Hyperlactatemia in sepsis may derive from a prevalent impairment of oxygen supply/demand and/or oxygen use. Discriminating between these two mechanisms may be relevant for the early fluid resuscitation strategy. Objectives: To understand the relationship among central venous oxygen saturation (ScvO2), lactate, and base excess to better determine the origin of lactate. Methods: This was a post hoc analysis of baseline variables of 1,741 patients with sepsis enrolled in the multicenter trial ALBIOS (Albumin ItalianOutcome Sepsis). Variableswere analyzed as a function of sextiles of lactate concentration and sextiles of ScvO2.Wedefined the "alactic base excess," as the sum of lactate and standard base excess. Measurements and Main Results: Organ dysfunction severity scores, physiologic variables of hepatic, metabolic, cardiac, and renal function, and 90-day mortality were measured. ScvO2 was lower than 70% only in 35% of patients. Mortality, organ dysfunction scores, and lactate were highest in the first and sixth sextiles of ScvO2. Although lactate level related strongly to mortality, it was associated with acidemia only when kidney function was impaired (creatinine >2 mg/dl), as rapidly detected by a negative alactic base excess. In contrast, positive values of alactic base excess were associated with a relative reduction of fluid balance. Conclusions: Hyperlactatemia is powerfully correlated with severity of sepsis and, in established sepsis, is caused more frequently by impaired tissue oxygen use, rather than by impaired oxygen transport. Concomitant acidemia was only observed in the presence of renal dysfunction, as rapidly detected by alactic base excess. The current strategy of fluid resuscitation could be modified according to the origin of excess lactate

    Fluid overload and acute kidney injury: cause or consequence?

    Get PDF
    There is increasing evidence that fluid overload and acute kidney injury (AKI) are associated but the exact cause-effect relationship remains unclear. Wang and colleagues analysed patients admitted to 30 intensive care units in China and found that fluid accumulation was independently associated with an increased risk of AKI and mortality. This commentary focuses on the close pathophysiological link between AKI and fluid overload and discusses the implications for clinical practice. It outlines some of the challenges, including the difficulty in diagnosing fluid overload reliably with current methods, and stresses the importance of personalised fluid therapy with physiological end-points to avoid the deleterious effects of fluid overload

    Oliguria in critically ill patients: a narrative review

    No full text
    Oliguria is often observed in critically ill patients. However, different thresholds in urine output (UO) have raised discussion as to the clinical importance of a transiently reduced UO of less than 0.5 ml/kg/h lasting for at least 6 h. While some studies have demonstrated that isolated oliguria without a concomitant increase in serum creatinine is associated with higher mortality rates, different underlying pathophysiological mechanisms suggest varied clinical importance of reduced UO, as some episodes of oliguria may be fully reversible. We aim to explore the clinical relevance of oliguria in critically ill patients and propose a clinical pathway for the diagnostic and therapeutic management of an oliguric, critically ill patient
    corecore