6 research outputs found

    Cobalt-containing layered or zeolitic silicates as photocatalysts for hydrogen generation

    Full text link
    Layered magadiite and zeolites Y containing framework Co or small CoO clusters in the pores have been synthesized and tested as photocatalysts for water splitting, in the absence and presence of methanol, upon UV or simulated sunlight irradiation; the best performing material was Co-magadiite.This work was supported by the Spanish Ministry of Economy and Competitiveness (Severo Ochea and CTQ-2012-32315) and the Marie Curie project PIEF-GA-2011-298740, and the Generalidad Valenciana (Prometeo 2012/2013).Neatu, S.; Puche Panadero, M.; Fornes Seguí, V.; García Gómez, H. (2014). Cobalt-containing layered or zeolitic silicates as photocatalysts for hydrogen generation. Chemical Communications. 50(93):14643-14646. https://doi.org/10.1039/c4cc05931jS14643146465093Chen, X., Shen, S., Guo, L., & Mao, S. S. (2010). Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 110(11), 6503-6570. doi:10.1021/cr1001645Mallouk, T. E. (2010). The Emerging Technology of Solar Fuels. The Journal of Physical Chemistry Letters, 1(18), 2738-2739. doi:10.1021/jz101161sKudo, A., & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 38(1), 253-278. doi:10.1039/b800489gLiao, L., Zhang, Q., Su, Z., Zhao, Z., Wang, Y., Li, Y., … Bao, J. (2013). Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nature Nanotechnology, 9(1), 69-73. doi:10.1038/nnano.2013.272Asahi, R. (2001). Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293(5528), 269-271. doi:10.1126/science.1061051Khan, S. U. M. (2002). Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science, 297(5590), 2243-2245. doi:10.1126/science.1075035Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331(6018), 746-750. doi:10.1126/science.1200448Garcés, J. M. (1988). Hypothetical Structures of Magadiite and Sodium Octosilicate and Structural Relationships Between the Layered Alkali Metal Silicates and the Mordenite- and Pentasil-Group Zeolites1. Clays and Clay Minerals, 36(5), 409-418. doi:10.1346/ccmn.1988.0360505Pinnavaia, T. J., Johnson, I. D., & Lipsicas, M. (1986). A 29Si MAS NMR study of tetrahedral site distributions in the layered silicic acid H+-magadiite (H2Si14O29 · nH2O) and in Na+-magadiite (Na2Si14O29 · nH2O). Journal of Solid State Chemistry, 63(1), 118-121. doi:10.1016/0022-4596(86)90159-3Barea, E. M., Fornés, V., Corma, A., Bourges, P., Guillon, E., & Puntes, V. F. (2004). A new synthetic route to produce metal zeolites with subnanometric magnetic clusters. Chem. Commun., (17), 1974-1975. doi:10.1039/b407225aR. M. Barrer , Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060iShimizu, S., Kiyozumi, Y., Maeda, K., Mizukami, F., Pál-Borbély, G., Mihályi, R. M., & Beyer, H. K. (1996). Transformation of intercalated layered silicates to zeolites in the solid state. Advanced Materials, 8(9), 759-762. doi:10.1002/adma.19960080913Nigro, E., Testa, F., Aiello, R., Lentz, P., Fonseca, A., Oszko, A., … Nagy, J. B. (2001). Synthesis and characterization of Co-containing zeolites of MFI structure. Oxide-based Systems at the Crossroads of Chemistry - Second International Workshop October 8-11, 2000, Como, Italy, 353-360. doi:10.1016/s0167-2991(01)80164-6Verberckmoes, A. A., Uytterhoeven, M. G., & Schoonheydt, R. A. (1997). Framework and extra-framework Co2+ in CoAPO-5 by diffuse reflectance spectroscopy. Zeolites, 19(2-3), 180-189. doi:10.1016/s0144-2449(97)00068-7Verberckmoes, A. A., Weckhuysen, B. M., & Schoonheydt, R. A. (1998). Spectroscopy and coordination chemistry of cobalt in molecular sieves. Microporous and Mesoporous Materials, 22(1-3), 165-178. doi:10.1016/s1387-1811(98)00091-2Frost, D. C., McDowell, C. A., & Woolsey, I. S. (1974). X-ray photoelectron spectra of cobalt compounds. Molecular Physics, 27(6), 1473-1489. doi:10.1080/00268977400101251Weckhuysen, B. M., Rao, R. R., A. Martens, J., & Schoonheydt, R. A. (1999). Transition Metal Ions in Microporous Crystalline Aluminophosphates: Isomorphous Substitution. European Journal of Inorganic Chemistry, 1999(4), 565-577. doi:10.1002/(sici)1099-0682(199904)1999:43.0.co;2-yP. A. Wright and J. A.Conner, Microporous Framework Solids, The Royal Society of Chemistry, Cambridge, 2007Tang, Q., Zhang, Q., Wang, P., Wang, Y., & Wan, H. (2004). Characterizations of Cobalt Oxide Nanoparticles within Faujasite Zeolites and the Formation of Metallic Cobalt. Chemistry of Materials, 16(10), 1967-1976. doi:10.1021/cm030626zZ. Sen , Solar Energy Fundamentals and Modeling Techniques, Springer Verlag, London, 2008Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., & Honda, M. (1997). Photocatalytic Reduction of CO2with H2O on Titanium Oxides Anchored within Micropores of Zeolites:  Effects of the Structure of the Active Sites and the Addition of Pt. The Journal of Physical Chemistry B, 101(14), 2632-2636. doi:10.1021/jp962696

    Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites

    Full text link
    [EN] Thermal treatment of the hybrid material formed by the spontaneous precipitation of graphene oxide and Ni,Mn layered double hydroxide leads to the segregation of nickel metal nanoparticles (Ni NPs) and the decomposition of graphene to CO2. Increasing the temperature increases the Ni NP size and results in the complete disappearance of graphene.This work has been supported by the Spanish Ministerio de Economia y Competitividad with FEDER confinancing (Project Cosolider-Ingenio in Molecular Nanoscience CSD2007-00010 and CTQ2011-26507) and the Generalitat Valenciana (Prometeo Program).Abellán Sáez, G.; Latorre Sánchez, M.; Fornes Seguí, V.; Ribera, A.; García Gómez, H. (2012). Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites. Chemical Communications (Online). 48(93):11416-11418. https://doi.org/10.1039/c2cc35750jS11416114184893Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666-686. doi:10.1039/c1cs15078bWang, H., Casalongue, H. S., Liang, Y., & Dai, H. (2010). Ni(OH)2Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society, 132(21), 7472-7477. doi:10.1021/ja102267jZhao, X., Xu, S., Wang, L., Duan, X., & Zhang, F. (2010). Exchange-biased NiFe2O4/NiO nanocomposites derived from NiFe-layered double hydroxides as a single precursor. Nano Research, 3(3), 200-210. doi:10.1007/s12274-010-1023-3Zhao, X., Zhang, F., Xu, S., Evans, D. G., & Duan, X. (2010). From Layered Double Hydroxides to ZnO-based Mixed Metal Oxides by Thermal Decomposition: Transformation Mechanism and UV-Blocking Properties of the Product. Chemistry of Materials, 22(13), 3933-3942. doi:10.1021/cm100383dDas, B., Reddy, M. V., Krishnamoorthi, C., Tripathy, S., Mahendiran, R., Rao, G. V. S., & Chowdari, B. V. R. (2009). Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8. Electrochimica Acta, 54(12), 3360-3373. doi:10.1016/j.electacta.2008.12.049Das, B., Reddy, M. V., Subba Rao, G. V., & Chowdari, B. V. R. (2007). Synthesis of Mo-cluster compound, LiHoMo3O8 by carbothermal reduction and its reactivity towards Li. Journal of Solid State Electrochemistry, 12(7-8), 953-959. doi:10.1007/s10008-007-0451-9Reddy, M. V., Subba Rao, G. V., & Chowdari, B. V. R. (2010). Long-term cycling studies on 4V-cathode, lithium vanadium fluorophosphate. Journal of Power Sources, 195(17), 5768-5774. doi:10.1016/j.jpowsour.2010.03.032Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11(2), 173-301. doi:10.1016/0920-5861(91)80068-kLeroux, F., & Taviot-Guého, C. (2005). Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies. Journal of Materials Chemistry, 15(35-36), 3628. doi:10.1039/b505014fAbellán, G., Coronado, E., Martí-Gastaldo, C., Ribera, A., & Sánchez-Royo, J. F. (2012). Layered double hydroxide (LDH)–organic hybrids as precursors for low-temperature chemical synthesis of carbon nanoforms. Chemical Science, 3(5), 1481. doi:10.1039/c2sc01064jLatorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007Wang, J., Fan, G., Wang, H., & Li, F. (2011). Synthesis, Characterization, and Catalytic Performance of Highly Dispersed Supported Nickel Catalysts from Ni–Al Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 50(24), 13717-13726. doi:10.1021/ie2015087Kooli, F., Rives, V., & Jones, W. (1997). Reduction of Ni2+−Al3+and Cu2+−Al3+Layered Double Hydroxides to Metallic Ni0and Cu0via Polyol Treatment. Chemistry of Materials, 9(10), 2231-2235. doi:10.1021/cm970391pNethravathi, C., Rajamathi, J. T., Ravishankar, N., Shivakumara, C., & Rajamathi, M. (2008). Graphite Oxide-Intercalated Anionic Clay and Its Decomposition to Graphene−Inorganic Material Nanocomposites. Langmuir, 24(15), 8240-8244. doi:10.1021/la8000027Kovanda, F., Grygar, T., & Dorničák, V. (2003). Thermal behaviour of Ni–Mn layered double hydroxide and characterization of formed oxides. Solid State Sciences, 5(7), 1019-1026. doi:10.1016/s1293-2558(03)00129-8Johnston-Peck, A. C., Wang, J., & Tracy, J. B. (2009). Synthesis and Structural and Magnetic Characterization of Ni(Core)/NiO(Shell) Nanoparticles. ACS Nano, 3(5), 1077-1084. doi:10.1021/nn900019xCordente, N., Respaud, M., Senocq, F., Casanove, M.-J., Amiens, C., & Chaudret, B. (2001). Synthesis and Magnetic Properties of Nickel Nanorods. Nano Letters, 1(10), 565-568. doi:10.1021/nl0100522Jiao, J., Seraphin, S., Wang, X., & Withers, J. C. (1996). Preparation and properties of ferromagnetic carbon‐coated Fe, Co, and Ni nanoparticles. Journal of Applied Physics, 80(1), 103-108. doi:10.1063/1.362765Wang, X., & Li, Y. (2002). Selected-Control Hydrothermal Synthesis of α- and β-MnO2Single Crystal Nanowires. Journal of the American Chemical Society, 124(12), 2880-2881. doi:10.1021/ja0177105Ahmad, T., Ramanujachary, K. V., Lofland, S. E., & Ganguli, A. K. (2004). Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). Journal of Materials Chemistry, 14(23), 3406. doi:10.1039/b409010aChen, S., Zhu, J., Wu, X., Han, Q., & Wang, X. (2010). Graphene Oxide−MnO2 Nanocomposites for Supercapacitors. ACS Nano, 4(5), 2822-2830. doi:10.1021/nn901311tZhong, K., Xia, X., Zhang, B., Li, H., Wang, Z., & Chen, L. (2010). MnO powder as anode active materials for lithium ion batteries. Journal of Power Sources, 195(10), 3300-3308. doi:10.1016/j.jpowsour.2009.11.13

    Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides

    Full text link
    The minute amount of hydrogen sulfate groups introduced into the graphene oxide (GO) obtained by Hummers oxidation of graphite renders this material as a highly e¿cient, recyclable acid catalyst for the ring opening of epoxides with methanol and other primary alcohols as nucleophile and solvent.Amarajothi, D.; Alvaro Rodríguez, MM.; Concepción Heydorn, P.; Fornes Seguí, V.; García Gómez, H. (2012). Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chemical Communications. 48(44):5443-5445. https://doi.org/10.1039/c2cc31385eS54435445484

    Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature

    Full text link
    [EN] Graphene oxide obtained through the standard Hummers oxidation of graphite and subsequent exfoliation promotes acetalization of aldehydes in methanol. It is a highly efficient reusable heterogeneous catalyst because of its advantages of absence of transition metals, sustainable resources, and high activity, large surface area, and accessibility of active sites. Analytical and spectroscopic data suggest that the sulfate groups introduced spontaneously during HummersThe authors gratefully acknowledge the Spanish Ministry of Competitivity (CTQ 2009-15689 and Consolider Multicat) for financial support.Amarajothi, DM.; Alvaro Rodríguez, MM.; Puche, M.; Fornes Seguí, V.; García Gómez, H. (2012). Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature. ChemCatChem. 4(12):2026-2030. https://doi.org/10.1002/cctc.201200461S20262030412Westervelt, R. M. (2008). APPLIED PHYSICS: Graphene Nanoelectronics. Science, 320(5874), 324-325. doi:10.1126/science.1156936Latorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666-686. doi:10.1039/c1cs15078bAn, X., & Yu, J. C. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426. doi:10.1039/c1ra00382hLiao, G., Chen, S., Quan, X., Yu, H., & Zhao, H. (2012). Graphene oxide modified g-C3N4hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem., 22(6), 2721-2726. doi:10.1039/c1jm13490fŠtengl, V., Popelková, D., & Vláčil, P. (2011). TiO2–Graphene Nanocomposite as High Performace Photocatalysts. The Journal of Physical Chemistry C, 115(51), 25209-25218. doi:10.1021/jp207515zZheng, Y., Liu, J., Liang, J., Jaroniec, M., & Qiao, S. Z. (2012). Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science, 5(5), 6717. doi:10.1039/c2ee03479dNing, G., Fan, Z., Wang, G., Gao, J., Qian, W., & Wei, F. (2011). Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chemical Communications, 47(21), 5976. doi:10.1039/c1cc11159kMachado, B. F., & Serp, P. (2012). Graphene-based materials for catalysis. Catal. Sci. Technol., 2(1), 54-75. doi:10.1039/c1cy00361ePyun, J. (2010). Graphenoxid als Katalysator: Kohlenstoffmaterialien in Anwendungen jenseits der Nanotechnologie. Angewandte Chemie, 123(1), 46-48. doi:10.1002/ange.201003897Pyun, J. (2010). Graphene Oxide as Catalyst: Application of Carbon Materials beyond Nanotechnology. Angewandte Chemie International Edition, 50(1), 46-48. doi:10.1002/anie.201003897Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035gHummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017Jia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). Graphite Oxide as an Auto-Tandem Oxidation-Hydration-Aldol Coupling Catalyst. Advanced Synthesis & Catalysis, 353(4), 528-532. doi:10.1002/adsc.201000748Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102jJia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). C–H oxidation using graphite oxide. Tetrahedron, 67(24), 4431-4434. doi:10.1016/j.tet.2011.02.065Dreyer, D. R., Jarvis, K. A., Ferreira, P. J., & Bielawski, C. W. (2011). Graphite Oxide as a Dehydrative Polymerization Catalyst: A One-Step Synthesis of Carbon-Reinforced Poly(phenylene methylene) Composites. Macromolecules, 44(19), 7659-7667. doi:10.1021/ma201306xDreyer, D. R., Jia, H.-P., & Bielawski, C. W. (2010). Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions. Angewandte Chemie, 122(38), 6965-6968. doi:10.1002/ange.201002160Liu, F., Sun, J., Zhu, L., Meng, X., Qi, C., & Xiao, F.-S. (2012). Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. Journal of Materials Chemistry, 22(12), 5495. doi:10.1039/c2jm16608aDhakshinamoorthy, A., Alvaro, M., Concepción, P., Fornés, V., & Garcia, H. (2012). Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chemical Communications, 48(44), 5443. doi:10.1039/c2cc31385eLi, X., Jiang, Y., Shuai, L., Wang, L., Meng, L., & Mu, X. (2012). Sulfonated copolymers with SO3H and COOH groups for the hydrolysis of polysaccharides. J. Mater. Chem., 22(4), 1283-1289. doi:10.1039/c1jm12954fBradder, P., Ling, S. K., Wang, S., & Liu, S. (2011). Dye Adsorption on Layered Graphite Oxide. Journal of Chemical & Engineering Data, 56(1), 138-141. doi:10.1021/je101049gGao, Y., Ma, D., Wang, C., Guan, J., & Bao, X. (2011). Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun., 47(8), 2432-2434. doi:10.1039/c0cc04420bDhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis & Catalysis, 352(17), 3022-3030. doi:10.1002/adsc.201000537Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., … Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806-4814. doi:10.1021/nn100636

    Visible-light photocatalytic hydrogen generation by using dye-sensitized graphene oxide as a photocatalyst

    Full text link
    Dye-sensitized graphene oxide is able to generate hydrogen from water/methanol mixtures (80:20) by using visible or solar light. The most efficient photocatalyst tested contained a tris(2,2-bipyridyl) ruthenium(II) complex incorporated in the interlayer spaces of a few layers of graphene oxide with a moderate degree of oxidation. The graphene oxide-based photocatalyst does not contain noble metals and we have determined that it is two orders of magnitude more active than catalysts based on conventional titania.M.L. thanks the Spanish Ministry of Education for a postgraduate scholarship. C.L. thanks the European Commission, the European Social Fund, and the Regione Calabria for a postgraduate scholarship and funding for her stay in Valencia.Latorre Sánchez, M.; Lavorato, C.; Puche Panadero, M.; Fornes Seguí, V.; Molinari, R.; García Gómez, H. (2012). Visible-light photocatalytic hydrogen generation by using dye-sensitized graphene oxide as a photocatalyst. Chemistry - A European Journal. 18(52):16774-16783. doi:10.1002/chem.201202372S1677416783185

    The synthesis of a hybrid graphene-nickel/manganese mixed oxide and its performance in lithium-ion batteries

    Full text link
    [EN] Mixing of aqueous suspensions of delaminated NiMn layered double hydroxide (LDH) and graphene oxide leads to the instantaneous precipitation of a hybrid material that after calcination under inert atmosphere at 450 degrees C leads to Ni6MnO8 nanoparticles deposited on larger reconstituted graphene sheets. This material exhibits electrical conductivity similar to graphite, superparamagnetism and can be used as an anode for Li-ion batteries. A maximum capacity value of 1030 mAh g(-1) was found during the first discharge, and capacity values higher than 400 mAh g(-1) were still achieved after 10 cycles. The methodology used here should allow the preparation of a large variety of hybrid graphene-metal oxide materials starting from other LDHs in which the properties derived from both constituents coexist.This work has been supported by the EU (ERC SPINMOL Advanced Grant), the Spanish MCINN with FEDER cofinancing (Project Consolider-Ingenio in Molecular Nanoscience CSD2007-00010, CTQ-2008-06720, and CTQ 2009-15896) and the Generalitat Valenciana (PROMETEO program). ML and PA thank the Spanish ministry of Education for a postgraduate scholarship and a Juan de la Cierva research contract, respectively.Latorre Sánchez, M.; Atienzar Corvillo, PE.; Abellan, G.; Puche Panadero, M.; Fornes Seguí, V.; Ribera, A.; García Gómez, H. (2012). The synthesis of a hybrid graphene-nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon. 50(2):518-525. https://doi.org/10.1016/J.Carbon 2011.09.007S51852550
    corecore