35 research outputs found

    Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes

    Get PDF
    Galaxy-scale bars are expected to provide an effective means for driving material toward the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). Here we present a statistically complete study of the effect of bars on average BH accretion. From a well-selected sample of 50,794 spiral galaxies (with {M}_{* }\sim 0.2\mbox{--}30\times {10}^{10}\,{M}_{\odot }) extracted from the Sloan Digital Sky Survey Galaxy Zoo 2 project, we separate those sources considered to contain galaxy-scale bars from those that do not. Using archival data taken by the Chandra X-ray Observatory, we identify X-ray luminous (LX≳1041 erg s−1{L}_{{\rm{X}}}\gtrsim {10}^{41}\,\mathrm{erg}\,{{\rm{s}}}^{-1}) active galactic nuclei and perform an X-ray stacking analysis on the remaining X-ray undetected sources. Through X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star-formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars (M˙acc≈3×10−5{\dot{M}}_{\mathrm{acc}}\approx 3\times {10}^{-5} M⊙{M}_{\odot } yr−1). Hence, we robustly conclude that large-scale bars have little or no effect on the average growth of BHs in nearby (z<0.15z\lt 0.15) galaxies over gigayear timescales
    corecore