855 research outputs found

    Engaging Leaders: The challenge of inspiring collective commitment in universities

    Get PDF
    Addressing the question of how leadership can work most successfully in universities, Engaging Leaders strengthens the sense of shared professional knowledge and capability amongst leaders in higher education. Presenting a narrative of change which not only spells out why universities need to work differently, this book also takes the reader through clear practical steps which any practising leader can take in order to build a collaborative professional culture which supports and challenges all members of an academic community.Leadership Foundation for Higher Educatio

    Attributes of effective interprofessional placement facilitation

    Get PDF
    Background: The quality of facilitation is an important influence on the efficacy of interprofessional education (IPE) delivery. The research objective was to increase understanding of the attributes of effective facilitation of students during external IPE placements in primary care situations. Methods and Findings: A thematic analysis of the experiences of academics, students, and placement-site staff at three placement sites was employed to explore participants’ perceptions of the attributes of effective IPE facilitators. These attributes included experience in an interprofessional context, together with an understanding of the specific clinical and assessment requirements of different disciplines. Facilitators also needed empathy with respect to the requirements of the external IPE placement sites and the ability to liaise between student and site needs. Conclusions: Models of IPE placement facilitation were most effective when, while following general principles, facilitators tailored them specifically for the individual situations of the placement sites and the learning requirements of particular groups of students. The most rewarding IPE learning experiences occurred when IPE facilitators provided sufficient clinical opportunities for students to work collaboratively with individual clients, provided the students perceived that their participation was relevant to their own discipline.Australian office of Learning and Teachin

    Looking to the future: Framing the implementation of interprofessional education and practice with scenario planning

    Get PDF
    Background: Adapting to interprofessional education and practice requires a change of perspective for many health professionals. We aimed to explore the potential of scenario planning to bridge the understanding gap and framing strategic planning for interprofessional education (IPE) and practice (IPP), as well as to implement innovative techniques and technology for large‑group scenario planning. Methods: A full‑day scenario planning workshop incorporating innovative methodology was designed and offered to participants. The 71 participants included academics from nine universities, as well as service providers, government, students and consumer organisations. The outcomes were evaluated by statistical and thematic analysis of a mixed method survey questionnaire. Results: The scenario planning method resulted in a positive response as a means of collaboratively exploring current knowledge and broadening entrenched attitudes. It was perceived to be an effective instrument for framing strategy for the implementation of IPE/IPP, with 81 percent of respondents to a post‑workshop survey indicating they would consider using scenario planning in their own organisations. Discussion: The scenario planning method can be used by tertiary academic institutions as a strategy in developing, implementing and embedding IPE, and for the enculturation of IPP in practice settings.Government of Western Australia, Department of Health

    Deep Chandra observations of NGC 1404 : cluster plasma physics revealed by an infalling early-type galaxy

    Get PDF
    The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot yet be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new {\sl Chandra} X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium (ISM) of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0\farcs5=45\,pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of {\sl Chandra}, and the very deep (670 ksec) exposure. At the leading edge, we observe sub-kpc scale eddies generated by Kelvin-Helmholtz instability and put an upper limit of 5\% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5\,μG to allow KHI to develop. The lack of evident magnetic draping layer just outside the contact edge is consistent with such an upper limit

    Dark Matter Subhalos and the X-ray Morphology of the Coma Cluster

    Full text link
    Structure formation models predict that clusters of galaxies contain numerous massive subhalos. The gravity of a subhalo in a cluster compresses the surrounding intracluster gas and enhances its X-ray emission. We present a simple model, which treats subhalos as slow moving and gasless, for computing this effect. Recent weak lensing measurements by Okabe et al. have determined masses of ~ 10^13 solar masses for three mass concentrations projected within 300 kpc of the center of the Coma Cluster, two of which are centered on the giant elliptical galaxies NGC 4889 and NGC 4874. Adopting a smooth spheroidal beta-model for the gas distribution in the unperturbed cluster, we model the effect of these subhalos on the X-ray morphology of the Coma Cluster, comparing our results to Chandra and XMM-Newton X-ray data. The agreement between the models and the X-ray morphology of the central Coma Cluster is striking. With subhalo parameters from the lensing measurements, the distances of the three subhalos from the Coma Cluster midplane along our line of sight are all tightly constrained. Using the model to fit the subhalo masses for NGC 4889 and NGC 4874 gives 9.1 x 10^12 and 7.6 x 10^12 solar masses, respectively, in good agreement with the lensing masses. These results lend strong support to the argument that NGC 4889 and NGC 4874 are each associated with a subhalo that resides near the center of the Coma Cluster. In addition to constraining the masses and 3-d location of subhalos, the X-ray data show promise as a means of probing the structure of central subhalos.Comment: ApJ, in press. Matches the published versio

    Novel cell engineering platform for improving production of AAV for gene therapy applications

    Get PDF
    Please click Additional Files below to see the full abstract

    Capturing the 3D motion of an infalling galaxy via fluid dynamics

    Get PDF
    The Fornax Cluster is the nearest galaxy cluster in the southern sky. NGC 1404 is a bright elliptical galaxy falling through the intracluster medium of the Fornax Cluster. The sharp leading edge of NGC 1404 forms a classical "cold front" that separates 0.6 keV dense interstellar medium and 1.5 keV diffuse intracluster medium. We measure the angular pressure variation along the cold front using a very deep (670\,ksec) {\sl Chandra} X-ray observation. We are taking the classical approach -- using stagnation pressure to determine a substructure's speed -- to the next level by not only deriving a general speed but also directionality which yields the complete velocity field as well as the distance of the substructure directly from the pressure distribution. We find a hydrodynamic model consistent with the pressure jump along NGC 1404's atmosphere measured in multiple directions. The best-fit model gives an inclination of 33∘ and a Mach number of 1.3 for the infall of NGC 1404, in agreement with complementary measurements of the motion of NGC 1404. Our study demonstrates the successful treatment of a highly ionized ICM as ideal fluid flow, in support of the hypothesis that magnetic pressure is not dynamically important over most of the virial region of galaxy clusters

    Buoyant AGN bubbles in the quasi-isothermal potential of NGC 1399

    Full text link
    The Fornax Cluster is a low-mass cool-core galaxy cluster. We present a deep {\sl Chandra} study of NGC 1399, the central dominant elliptical galaxy of Fornax. The cluster center harbors two symmetric X-ray cavities coincident with a pair of radio lobes fed by two collimated jets along a north-south axis. A temperature map reveals that the AGN outburst has created a channel filled with cooler gas out to a radius of 10 kpc. The cavities are surrounded by cool bright rims and filaments that may have been lifted from smaller radii by the buoyant bubbles. X-ray imaging suggests a potential ghost bubble of ≳\gtrsim 5\,kpc diameter to the northwest. We find that the amount of gas lifted by AGN bubbles is comparable to that which would otherwise cool, demonstrating that AGN driven outflow is effective in offsetting cooling in low-mass clusters. The cluster cooling time scale is >30>30 times longer than the dynamical time scale, which is consistent with the lack of cold molecular gas at the cluster center. The X-ray hydrostatic mass is consistent within 10\% with the total mass derived from the optical data. The observed entropy profile rises linearly, following a steeper slope than that observed at the centers of massive clusters; gas shed by stars in NGC 1399 may be incorporated in the hot phase. However, it is far-fetched for supernova-driven outflow to produce and maintain the thermal distribution in NGC 1399 and it is in tension with the metal content in the hot gas.Comment: 11 pages, 6 figures, Matches the version published in Ap

    Chandra observations of nuclear outflows in the elliptical galaxy NGC 4552 in the virgo cluster

    Get PDF
    We use a 54.4 ks Chandra observation to study nuclear outflow activity in NGC 4552 (M89), an elliptical galaxy in the Virgo Cluster. Chandra images in the 0.5–2 keV band show two ringlike features ∼1.7 kpc in diameter in the core of NGC 4552, as reported previously by Filho et al. We use spherically symmetric point explosion shock models to argue that the shape of the surface brightness profile across the rims of the rings and the temperature of hot gas in the rings are consistent with a Mach 1.7 shock carrying mean mechanical power Lshock ∼ 3 × 1041 ergs s-1 produced by a ∼1.4 × 1055 ergs nuclear outburst ∼1–2 Myr ago. We find the gas temperature in the central ∼100 pc of the galaxy to be 1.0 ± 0.2 keV, hotter than elsewhere in the galaxy, suggesting that we may be directly observing the reheating of the galaxy ISM by the outburst
    • …
    corecore