42 research outputs found

    Does Gender Leave an Epigenetic Imprint on the Brain?

    Get PDF
    The words “sex” and “gender” are often used interchangeably in common usage. In fact, the Merriam-Webster dictionary offers “sex” as the definition of gender. The authors of this review are neuroscientists, and the words “sex” and “gender” mean very different things to us: sex is based on biological factors such as sex chromosomes and gonads, whereas gender has a social component and involves differential expectations or treatment by conspecifics, based on an individual’s perceived sex. While we are accustomed to thinking about “sex” and differences between males and females in epigenetic marks in the brain, we are much less used to thinking about the biological implications of gender. Nonetheless, careful consideration of the field of epigenetics leads us to conclude that gender must also leave an epigenetic imprint on the brain. Indeed, it would be strange if this were not the case, because all environmental influences of any import can epigenetically change the brain. In the following pages, we explain why there is now sufficient evidence to suggest that an epigenetic imprint for gender is a logical conclusion. We define our terms for sex, gender, and epigenetics, and describe research demonstrating sex differences in epigenetic mechanisms in the brain which, to date, is mainly based on work in non-human animals. We then give several examples of how gender, rather than sex, may cause the brain epigenome to differ in males and females, and finally consider the myriad of ways that sex and gender interact to shape gene expression in the brain

    Neonatal inhibition of DNA methylation disrupts testosterone-dependent masculinization of neurochemical phenotype

    Get PDF
    Many neural sex differences are differences in the number of neurons of a particular phenotype. For example, male rodents have more calbindin-expressing neurons in the medial preoptic area (mPOA) and bed nucleus of the stria terminalis (BNST), and females have more neurons expressing estrogen receptor alpha (ERα) and kisspeptin in the ventromedial nucleus of the hypothalamus (VMH) and the anteroventral periventricular nucleus (AVPV), respectively. These sex differences depend on neonatal exposure to testosterone, but the underlying molecular mechanisms are unknown. DNA methylation is important for cell phenotype differentiation throughout the developing organism. We hypothesized that testosterone causes sex differences in neurochemical phenotype via changes in DNA methylation, and tested this by inhibiting DNA methylation neonatally in male and female mice, and in females given a masculinizing dose of testosterone. Neonatal testosterone treatment masculinized calbindin, ERα and kisspeptin cell number of females at weaning. Inhibiting DNA methylation with zebularine increased calbindin cell number only in control females, thus eliminating sex differences in calbindin in the mPOA and BNST. Zebularine also reduced the sex difference in ERα cell number in the VMH, in this case by increasing ERα neuron number in males and testosterone-treated females. In contrast, the neonatal inhibition of DNA methylation had no effect on kisspeptin cell number. We conclude that testosterone normally increases the number of calbindin cells and reduces ERα cells in males through orchestrated changes in DNA methylation, contributing to, or causing, the sex differences in both cell types.Fil: Cisternas, Carla Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Cortese, Maria Laura. Georgia State University; Estados UnidosFil: Golynker, Ilona. Georgia State University; Estados UnidosFil: Castillo-Ruiz, Alexandra. Georgia State University; Estados UnidosFil: Forger, Nancy G.. Georgia State University; Estados Unido

    Birth elicits a conserved neuroendocrine response with implications for perinatal osmoregulation and neuronal cell death

    Get PDF
    Long-standing clinical findings report a dramatic surge of vasopressin in umbilical cord blood of the human neonate, but the neural underpinnings and function(s) of this phenomenon remain obscure. We studied neural activation in perinatal mice and rats, and found that birth triggers activation of the suprachiasmatic, supraoptic, and paraventricular nuclei of the hypothalamus. This was seen whether mice were born vaginally or via Cesarean section (C-section), and when birth timing was experimentally manipulated. Neuronal phenotyping showed that the activated neurons were predominantly vasopressinergic, and vasopressin mRNA increased fivefold in the hypothalamus during the 2–3 days before birth. Copeptin, a surrogate marker of vasopressin, was elevated 30-to 50-fold in plasma of perinatal mice, with higher levels after a vaginal than a C-section birth. We also found an acute decrease in plasma osmolality after a vaginal, but not C-section birth, suggesting that the difference in vasopressin release between birth modes is functionally meaningful. When vasopressin was administered centrally to newborns, we found an ~ 50% reduction in neuronal cell death in specific brain areas. Collectively, our results identify a conserved neuroendocrine response to birth that is sensitive to birth mode, and influences peripheral physiology and neurodevelopment.Fil: Hoffiz, Yarely C.. Georgia State University; Estados UnidosFil: Castillo Ruiz, Alexandra. Georgia State University; Estados UnidosFil: Hall, Megan A. L.. Georgia State University; Estados UnidosFil: Hite, Taylor A.. Georgia State University; Estados UnidosFil: Gray, Jennifer M.. Georgia State University; Estados UnidosFil: Cisternas, Carla Daniela. Georgia State University; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra. Universidad Nacional de CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra; ArgentinaFil: Cortes, Laura R.. Georgia State University; Estados UnidosFil: Jacobs, Andrew J.. Georgia State University; Estados UnidosFil: Forger, Nancy G.. Georgia State University; Estados Unido

    Brain effects of gestating germ-free persist in mouse neonates despite acquisition of a microbiota at birth

    Get PDF
    At birth, mammals experience a massive colonization by microorganisms. We previously reported that newborn mice gestated and born germ-free (GF) have increased microglial labeling and alterations in developmental neuronal cell death in the hippocampus and hypothalamus, as well as greater forebrain volume and body weight when compared to conventionally colonized (CC) mice. To test whether these effects are solely due to differences in postnatal microbial exposure, or instead may be programmed in utero, we cross-fostered GF newborns immediately after birth to CC dams (GF→CC) and compared them to offspring fostered within the same microbiota status (CC→CC, GF→GF). Because key developmental events (including microglial colonization and neuronal cell death) shape the brain during the first postnatal week, we collected brains on postnatal day (P) 7. To track gut bacterial colonization, colonic content was also collected and subjected to 16S rRNA qPCR and Illumina sequencing. In the brains of GF→GF mice, we replicated most of the effects seen previously in GF mice. Interestingly, the GF brain phenotype persisted in GF→CC offspring for almost all measures. In contrast, total bacterial load did not differ between the CC→CC and GF→CC groups on P7, and bacterial community composition was also very similar, with a few exceptions. Thus, GF→CC offspring had altered brain development during at least the first 7 days after birth despite a largely normal microbiota. This suggests that prenatal influences of gestating in an altered microbial environment programs neonatal brain development

    Social Structure Predicts Genital Morphology in African Mole-Rats

    Get PDF
    BACKGROUND:African mole-rats (Bathyergidae, Rodentia) exhibit a wide range of social structures, from solitary to eusocial. We previously found a lack of sex differences in the external genitalia and morphology of the perineal muscles associated with the phallus in the eusocial naked mole-rat. This was quite surprising, as the external genitalia and perineal muscles are sexually dimorphic in all other mammals examined. We hypothesized that the lack of sex differences in naked mole-rats might be related to their unusual social structure. METHODOLOGY/PRINCIPAL FINDINGS:We compared the genitalia and perineal muscles in three African mole-rat species: the naked mole-rat, the solitary silvery mole-rat, and the Damaraland mole-rat, a species considered to be eusocial, but with less reproductive skew than naked mole-rats. Our findings support a relationship between social structure, mating system, and sexual differentiation. Naked mole-rats lack sex differences in genitalia and perineal morphology, silvery mole-rats exhibit sex differences, and Damaraland mole-rats are intermediate. CONCLUSIONS/SIGNIFICANCE:The lack of sex differences in naked mole-rats is not an attribute of all African mole-rats, but appears to have evolved in relation to their unusual social structure and reproductive biology

    Birth triggers an inflammatory response in the neonatal periphery and brain

    Full text link
    Birth is preceded by inflammation at the fetal/maternal interface. Additionally, the newborn experiences stimuli that under any other circumstance could elicit an immune response. It is unknown, however, whether birth elicits an inflammatory response in the newborn that extends to the brain. Moreover, it is unknown whether birth mode may alter such a response. To study these questions, we first measured corticosterone and pro- and anti-inflammatory cytokines in plasma of mouse offspring at several timepoints spaced closely before and after a vaginal or Cesarean birth. We found highest levels of IL-6 one day before birth and surges in corticosterone and IL-10 just after birth, regardless of birth mode. We next examined the neuroimmune response by measuring cytokine mRNA expression and microglial number and morphology in the paraventricular nucleus of the hypothalamus and hippocampus around the time of birth. We found a marked increase in TNF-α expression in both brain regions a day after birth, and rapid increases in microglial cell number in the first three days postnatal, with subtle differences by birth mode. To test whether the association between birth and cytokine production or expansion of microglia is causal, we manipulated birth timing. Remarkably, advancing birth by a day advanced the increases in all of the markers tested. Thus, birth triggers an immune response in the body and brain of offspring. Our results may provide a mechanism for effects of birth (e.g., acute changes in cell death and neural activation) previously reported in the newborn brain.Fil: Castillo Ruiz, Alexandra. Georgia State University; Estados UnidosFil: Cisternas, Carla Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Sturgeon, Hannah. Georgia State University; Estados UnidosFil: Forger, Nancy G.. Georgia State University; Estados Unido
    corecore