351 research outputs found

    Square vortex lattice at anomalously low magnetic fields in electron-doped Nd1.85_{1.85}Ce0.15_{0.15}CuO4_{4}

    Full text link
    We report here on the first direct observations of the vortex lattice in the bulk of electron-doped Nd1.85_{1.85}Ce0.15_{0.15}CuO4_{4} single crystals. Using small angle neutron scattering, we have observed a square vortex lattice with the nearest-neighbors oriented at 45∘^{\circ} from the Cu-O bond direction, which is consistent with theories based on the d-wave superconducting gap. However, the square symmetry persists down to unusually low magnetic fields. Moreover, the diffracted intensity from the vortex lattice is found to decrease rapidly with increasing magnetic field.Comment: 4 pages, 4 Figures, accepted for publication in Phys. Rev. Let

    High magnetic field studies of the Vortex Lattice structure in YBa2Cu3O7

    Full text link
    We report on small angle neutron scattering measurements of the vortex lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum field of 11~T up to 16.7~T with the field applied parallel to the c axis. This is the first microscopic study of vortex matter in this region of the superconducting phase. We find the high field VL displays a rhombic structure, with a field-dependent coordination that passes through a square configuration, and which does not lock-in to a field-independent structure. The VL pinning reduces with increasing temperature, but is seen to affect the VL correlation length even above the irreversibility temperature of the lattice structure. At high field and temperature we observe a melting transition, which appears to be first order, with no detectable signal from a vortex liquid above the transition

    Glass phases of flux lattices in layered superconductors

    Full text link
    We study a flux lattice which is parallel to superconducting layers, allowing for dislocations and for disorder of both short wavelength and long wavelength. We find that the long wavelength disorder has a significant effect on the phase diagram -- it produces a first order transition within the Bragg glass phase and leads to melting at strong disorder. This then allows a Friedel scenario of 2D superconductivity.Comment: 5 pages, 1 eps figure, Revte

    Colorectal cancer is associated with increased circulating lipopolysaccharide, inflammation and hypercoagulability

    Get PDF
    Gut dysbiosis contributes to the development of a dysfunctional gut barrier, facilitating the translocation of bacteria and inflammagens, and is implicated in colorectal cancer (CRC) pathogenesis. Such ‘leaky gut’ conditions result in systemic inflammation, of which a hallmark is increased hypercoagulability. Fluorescence antibody confocal microscopy was used to determine circulating levels of lipopolysaccharide (LPS) in control and CRC populations. Here we showed that circulating levels of LPS are significantly elevated in the CRC population. We also showed that markers of inflammation and hypercoagulability are increased in this population. Furthermore, anomalous blood clotting and structural changes in blood components are presented. Importantly, the association between LPS levels, inflammation, and hematological dysfunction was analysed. Statistical regression models were applied to identify markers with strong association with CRC, and to investigate the correlation between markers. A core aim is enhanced biomarker discovery for CRC. We conclude that circulating LPS can promote systemic inflammation and contribute to the development of a pathological coagulation system, with resulting chronic inflammation and an activated coagulation system implicated in tumorigenesis. Blood-based screening tools are an emerging research area of interest for CRC screening. We propose the use of additional (novel) biomarkers to effectively screen for CRC

    Observation of a Triangular to Square Flux Lattice Phase Transition in YBCO

    Full text link
    We have used the technique of small-angle neutron scattering to observe magnetic flux lines directly in an YBCO single crystal at fields higher than previously reported. For field directions close to perpendicular to the CuO2 planes, we find that the flux lattice structure changes smoothly from a distorted triangular co-ordination to nearly perfectly square as the magnetic induction approaches 11 T. The orientation of the square flux lattice is as expected from recent d-wave theories, but is 45 deg from that recently observed in LSCO

    Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid

    Full text link
    Sub-Nyquist time frequency packing technique was demonstrated for the first time in a super channel field trial transmission over long-haul distances. The technique allows a limited spectral occupancy even with low order modulation formats. The transmission was successfully performed on a deployed Australian link between Sydney and Melbourne which included 995 km of uncompensated SMF with coexistent traffic. 40 and 100 Gb/s co-propagating channels were transmitted together with the super-channel in a 50 GHz ITU-T grid without additional penalty. The super-channel consisted of eight sub-channels with low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness and reduced complexity with respect to higher order formats. At the receiver side, coherent detection was used together with iterative maximum-a-posteriori (MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully transmitted between Sydney and Melbourne within four 50GHz WSS channels (200 GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8 dB, comparable to the OSNR of the installed 100 Gb/s channels. The system reliability was proven through long term measurements. In addition, by closing the link in a loop back configuration, a potential SE*d product of 9254 bit/s/Hz*km was achieved

    Symmetry and disorder of the vitreous vortex lattice in an overdoped BaFe_{2-x}Co_xAs_2 superconductor: Indication for strong single-vortex pinning

    Get PDF
    The disordered flux line lattice in single crystals of the slightly overdoped aFe_{2-x}Co_xAs_2 (x = 0.19, Tc = 23 K) superconductor is studied by magnetization measurements, small-angle neutron scattering (SANS), and magnetic force microscopy (MFM). In the whole range of magnetic fields up to 9 T, vortex pinning precludes the formation of an ordered Abrikosov lattice. Instead, a vitreous vortex phase (vortex glass) with a short-range hexagonal order is observed. Statistical processing of MFM datasets lets us directly measure its radial and angular distribution functions and extract the radial correlation length \zeta. In contrast to predictions of the collective pinning model, no increase in the correlated volume with the applied field is observed. Instead, we find that \zeta decreases as 1.3*R1 ~ H^(-1/2) over four decades of the applied magnetic field, where R1 is the radius of the first coordination shell of the vortex lattice. Such universal scaling of \zeta implies that the vortex pinning in iron arsenides remains strong even in the absence of static magnetism. This result is consistent with all the real- and reciprocal-space vortex-lattice measurements in overdoped as-grown aFe_{2-x}Co_xAs_2 published to date and is thus sample-independent. The failure of the collective pinning model suggests that the vortices remain in the single-vortex pinning limit even in high magnetic fields up to 9 T.Comment: 11 pages, 6 figure
    • …
    corecore