33,749 research outputs found

    The Effects of Stress Tensor Fluctuations upon Focusing

    Full text link
    We treat the gravitational effects of quantum stress tensor fluctuations. An operational approach is adopted in which these fluctuations produce fluctuations in the focusing of a bundle of geodesics. This can be calculated explicitly using the Raychaudhuri equation as a Langevin equation. The physical manifestation of these fluctuations are angular blurring and luminosity fluctuations of the images of distant sources. We give explicit results for the case of a scalar field on a flat background in a thermal state.Comment: 26 pages, 1 figure, new material added in Sect. III and in Appendices B and

    Bounds on negative energy densities in flat spacetime

    Get PDF
    We generalise results of Ford and Roman which place lower bounds -- known as quantum inequalities -- on the renormalised energy density of a quantum field averaged against a choice of sampling function. Ford and Roman derived their results for a specific non-compactly supported sampling function; here we use a different argument to obtain quantum inequalities for a class of smooth, even and non-negative sampling functions which are either compactly supported or decay rapidly at infinity. Our results hold in dd-dimensional Minkowski space (d≥2d\ge 2) for the free real scalar field of mass m≥0m\ge 0. We discuss various features of our bounds in 2 and 4 dimensions. In particular, for massless field theory in 2-dimensional Minkowski space, we show that our quantum inequality is weaker than Flanagan's optimal bound by a factor of 3/2.Comment: REVTeX, 13 pages and 2 figures. Minor typos corrected, one reference adde

    Restrictions on Negative Energy Density in Flat Spacetime

    Full text link
    In a previous paper, a bound on the negative energy density seen by an arbitrary inertial observer was derived for the free massless, quantized scalar field in four-dimensional Minkowski spacetime. This constraint has the form of an uncertainty principle-type limitation on the magnitude and duration of the negative energy density. That result was obtained after a somewhat complicated analysis. The goal of the current paper is to present a much simpler method for obtaining such constraints. Similar ``quantum inequality'' bounds on negative energy density are derived for the electromagnetic field, and for the massive scalar field in both two and four-dimensional Minkowski spacetime.Comment: 17 pages, including two figures, uses epsf, minor revisions in the Introduction, conclusions unchange

    Gravitational vacuum polarization III: Energy conditions in the (1+1) Schwarzschild spacetime

    Full text link
    Building on a pair of earlier papers, I investigate the various point-wise and averaged energy conditions for the quantum stress-energy tensor corresponding to a conformally-coupled massless scalar field in the in the (1+1)-dimensional Schwarzschild spacetime. Because the stress-energy tensors are analytically known, I can get exact results for the Hartle--Hawking, Boulware, and Unruh vacua. This exactly solvable model serves as a useful sanity check on my (3+1)-dimensional investigations wherein I had to resort to a mixture of analytic approximations and numerical techniques. Key results in (1+1) dimensions are: (1) NEC is satisfied outside the event horizon for the Hartle--Hawking vacuum, and violated for the Boulware and Unruh vacua. (2) DEC is violated everywhere in the spacetime (for any quantum state, not just the standard vacuum states).Comment: 7 pages, ReV_Te

    Use of mathematical derivatives (time-domain differentiation) on chromatographic data to enhance the detection and quantification of an unknown 'rider' peak

    Get PDF
    Two samples of an anticancer prodrug, AQ4N, were submitted for HPLC assay and showed an unidentified impurity that eluted as a 'rider' on the tail of the main peak. Mathematical derivatization of the chromatograms offered several advantages over conventional skimmed integration. A combination of the second derivative amplitude and simple linear regression gave a novel method for estimating the true peak area of the impurity peak. All the calculation steps were carried out using a widely available spreadsheet program. (C) 2003 Elsevier B.V. All rights reserved

    Averaged Energy Conditions in 4D Evaporating Black Hole Backgrounds

    Full text link
    Using Visser's semi-analytical model for the stress-energy tensor corresponding to the conformally coupled massless scalar field in the Unruh vacuum, we examine, by explicitly evaluating the relevant integrals over half-complete geodesics, the averaged weak (AWEC) and averaged null (ANEC) energy conditions along with Ford-Roman quantum inequality-type restrictions on negative energy in the context of four dimensional evaporating black hole backgrounds. We find that in all cases where the averaged energy conditions fail, there exist quantum inequality bounds on the magnitude and duration of negative energy densities.Comment: Revtex, 13 pages, to appear in Phy. Rev.

    Dynamic wormholes

    Full text link
    A new framework is proposed for general dynamic wormholes, unifying them with black holes. Both are generically defined locally by outer trapping horizons, temporal for wormholes and spatial or null for black and white holes. Thus wormhole horizons are two-way traversible, while black-hole and white-hole horizons are only one-way traversible. It follows from the Einstein equation that the null energy condition is violated everywhere on a generic wormhole horizon. It is suggested that quantum inequalities constraining negative energy break down at such horizons. Wormhole dynamics can be developed as for black-hole dynamics, including a reversed second law and a first law involving a definition of wormhole surface gravity. Since the causal nature of a horizon can change, being spatial under positive energy and temporal under sufficient negative energy, black holes and wormholes are interconvertible. In particular, if a wormhole's negative-energy source fails, it may collapse into a black hole. Conversely, irradiating a black-hole horizon with negative energy could convert it into a wormhole horizon. This also suggests a possible final state of black-hole evaporation: a stationary wormhole. The new framework allows a fully dynamical description of the operation of a wormhole for practical transport, including the back-reaction of the transported matter on the wormhole. As an example of a matter model, a Klein-Gordon field with negative gravitational coupling is a source for a static wormhole of Morris & Thorne.Comment: 5 revtex pages, 4 eps figures. Minor change which did not reach publisher

    Semiclassical Gravity Theory and Quantum Fluctuations

    Get PDF
    We discuss the limits of validity of the semiclassical theory of gravity in which a classical metric is coupled to the expectation value of the stress tensor. It is argued that this theory is a good approximation only when the fluctuations in the stress tensor are small. We calculate a dimensionless measure of these fluctuations for a scalar field on a flat background in particular cases, including squeezed states and the Casimir vacuum state. It is found that the fluctuations are small for states which are close to a coherent state, which describes classical behavior, but tend to be large otherwise. We find in all cases studied that the energy density fluctuations are large whenever the local energy density is negative. This is taken to mean that the gravitational field of a system with negative energy density, such as the Casimir vacuum, is not described by a fixed classical metric but is undergoing large metric fluctuations. We propose an operational scheme by which one can describe a fluctuating gravitational field in terms of the statistical behavior of test particles. For this purpose we obtain an equation of the form of the Langevin equation used to describe Brownian motion.Comment: In REVTEX. 20pp + 4 figures(not included, available upon request) TUTP-93-

    Scalar Field Quantum Inequalities in Static Spacetimes

    Get PDF
    We discuss quantum inequalities for minimally coupled scalar fields in static spacetimes. These are inequalities which place limits on the magnitude and duration of negative energy densities. We derive a general expression for the quantum inequality for a static observer in terms of a Euclidean two-point function. In a short sampling time limit, the quantum inequality can be written as the flat space form plus subdominant correction terms dependent upon the geometric properties of the spacetime. This supports the use of flat space quantum inequalities to constrain negative energy effects in curved spacetime. Using the exact Euclidean two-point function method, we develop the quantum inequalities for perfectly reflecting planar mirrors in flat spacetime. We then look at the quantum inequalities in static de~Sitter spacetime, Rindler spacetime and two- and four-dimensional black holes. In the case of a four-dimensional Schwarzschild black hole, explicit forms of the inequality are found for static observers near the horizon and at large distances. It is show that there is a quantum averaged weak energy condition (QAWEC), which states that the energy density averaged over the entire worldline of a static observer is bounded below by the vacuum energy of the spacetime. In particular, for an observer at a fixed radial distance away from a black hole, the QAWEC says that the averaged energy density can never be less than the Boulware vacuum energy density.Comment: 27 pages, 2 Encapsulated Postscript figures, uses epsf.tex, typeset in RevTe

    A quantum weak energy inequality for the Dirac field in two-dimensional flat spacetime

    Full text link
    Fewster and Mistry have given an explicit, non-optimal quantum weak energy inequality that constrains the smeared energy density of Dirac fields in Minkowski spacetime. Here, their argument is adapted to the case of flat, two-dimensional spacetime. The non-optimal bound thereby obtained has the same order of magnitude, in the limit of zero mass, as the optimal bound of Vollick. In contrast with Vollick's bound, the bound presented here holds for all (non-negative) values of the field mass.Comment: Version published in Classical and Quantum Gravity. 7 pages, 1 figur
    • …
    corecore