33,749 research outputs found
The Effects of Stress Tensor Fluctuations upon Focusing
We treat the gravitational effects of quantum stress tensor fluctuations. An
operational approach is adopted in which these fluctuations produce
fluctuations in the focusing of a bundle of geodesics. This can be calculated
explicitly using the Raychaudhuri equation as a Langevin equation. The physical
manifestation of these fluctuations are angular blurring and luminosity
fluctuations of the images of distant sources. We give explicit results for the
case of a scalar field on a flat background in a thermal state.Comment: 26 pages, 1 figure, new material added in Sect. III and in Appendices
B and
Bounds on negative energy densities in flat spacetime
We generalise results of Ford and Roman which place lower bounds -- known as
quantum inequalities -- on the renormalised energy density of a quantum field
averaged against a choice of sampling function. Ford and Roman derived their
results for a specific non-compactly supported sampling function; here we use a
different argument to obtain quantum inequalities for a class of smooth, even
and non-negative sampling functions which are either compactly supported or
decay rapidly at infinity. Our results hold in -dimensional Minkowski space
() for the free real scalar field of mass . We discuss various
features of our bounds in 2 and 4 dimensions. In particular, for massless field
theory in 2-dimensional Minkowski space, we show that our quantum inequality is
weaker than Flanagan's optimal bound by a factor of 3/2.Comment: REVTeX, 13 pages and 2 figures. Minor typos corrected, one reference
adde
Restrictions on Negative Energy Density in Flat Spacetime
In a previous paper, a bound on the negative energy density seen by an
arbitrary inertial observer was derived for the free massless, quantized scalar
field in four-dimensional Minkowski spacetime. This constraint has the form of
an uncertainty principle-type limitation on the magnitude and duration of the
negative energy density. That result was obtained after a somewhat complicated
analysis. The goal of the current paper is to present a much simpler method for
obtaining such constraints. Similar ``quantum inequality'' bounds on negative
energy density are derived for the electromagnetic field, and for the massive
scalar field in both two and four-dimensional Minkowski spacetime.Comment: 17 pages, including two figures, uses epsf, minor revisions in the
Introduction, conclusions unchange
Gravitational vacuum polarization III: Energy conditions in the (1+1) Schwarzschild spacetime
Building on a pair of earlier papers, I investigate the various point-wise
and averaged energy conditions for the quantum stress-energy tensor
corresponding to a conformally-coupled massless scalar field in the in the
(1+1)-dimensional Schwarzschild spacetime. Because the stress-energy tensors
are analytically known, I can get exact results for the Hartle--Hawking,
Boulware, and Unruh vacua. This exactly solvable model serves as a useful
sanity check on my (3+1)-dimensional investigations wherein I had to resort to
a mixture of analytic approximations and numerical techniques. Key results in
(1+1) dimensions are: (1) NEC is satisfied outside the event horizon for the
Hartle--Hawking vacuum, and violated for the Boulware and Unruh vacua. (2) DEC
is violated everywhere in the spacetime (for any quantum state, not just the
standard vacuum states).Comment: 7 pages, ReV_Te
Use of mathematical derivatives (time-domain differentiation) on chromatographic data to enhance the detection and quantification of an unknown 'rider' peak
Two samples of an anticancer prodrug, AQ4N, were submitted for HPLC assay and showed an unidentified impurity that eluted as a 'rider' on the tail of the main peak. Mathematical derivatization of the chromatograms offered several advantages over conventional skimmed integration. A combination of the second derivative amplitude and simple linear regression gave a novel method for estimating the true peak area of the impurity peak. All the calculation steps were carried out using a widely available spreadsheet program. (C) 2003 Elsevier B.V. All rights reserved
Averaged Energy Conditions in 4D Evaporating Black Hole Backgrounds
Using Visser's semi-analytical model for the stress-energy tensor
corresponding to the conformally coupled massless scalar field in the Unruh
vacuum, we examine, by explicitly evaluating the relevant integrals over
half-complete geodesics, the averaged weak (AWEC) and averaged null (ANEC)
energy conditions along with Ford-Roman quantum inequality-type restrictions on
negative energy in the context of four dimensional evaporating black hole
backgrounds. We find that in all cases where the averaged energy conditions
fail, there exist quantum inequality bounds on the magnitude and duration of
negative energy densities.Comment: Revtex, 13 pages, to appear in Phy. Rev.
Dynamic wormholes
A new framework is proposed for general dynamic wormholes, unifying them with
black holes. Both are generically defined locally by outer trapping horizons,
temporal for wormholes and spatial or null for black and white holes. Thus
wormhole horizons are two-way traversible, while black-hole and white-hole
horizons are only one-way traversible. It follows from the Einstein equation
that the null energy condition is violated everywhere on a generic wormhole
horizon. It is suggested that quantum inequalities constraining negative energy
break down at such horizons. Wormhole dynamics can be developed as for
black-hole dynamics, including a reversed second law and a first law involving
a definition of wormhole surface gravity. Since the causal nature of a horizon
can change, being spatial under positive energy and temporal under sufficient
negative energy, black holes and wormholes are interconvertible. In particular,
if a wormhole's negative-energy source fails, it may collapse into a black
hole. Conversely, irradiating a black-hole horizon with negative energy could
convert it into a wormhole horizon. This also suggests a possible final state
of black-hole evaporation: a stationary wormhole. The new framework allows a
fully dynamical description of the operation of a wormhole for practical
transport, including the back-reaction of the transported matter on the
wormhole. As an example of a matter model, a Klein-Gordon field with negative
gravitational coupling is a source for a static wormhole of Morris & Thorne.Comment: 5 revtex pages, 4 eps figures. Minor change which did not reach
publisher
Semiclassical Gravity Theory and Quantum Fluctuations
We discuss the limits of validity of the semiclassical theory of gravity in
which a classical metric is coupled to the expectation value of the stress
tensor. It is argued that this theory is a good approximation only when the
fluctuations in the stress tensor are small. We calculate a dimensionless
measure of these fluctuations for a scalar field on a flat background in
particular cases, including squeezed states and the Casimir vacuum state. It is
found that the fluctuations are small for states which are close to a coherent
state, which describes classical behavior, but tend to be large otherwise. We
find in all cases studied that the energy density fluctuations are large
whenever the local energy density is negative. This is taken to mean that the
gravitational field of a system with negative energy density, such as the
Casimir vacuum, is not described by a fixed classical metric but is undergoing
large metric fluctuations. We propose an operational scheme by which one can
describe a fluctuating gravitational field in terms of the statistical behavior
of test particles. For this purpose we obtain an equation of the form of the
Langevin equation used to describe Brownian motion.Comment: In REVTEX. 20pp + 4 figures(not included, available upon request)
TUTP-93-
Scalar Field Quantum Inequalities in Static Spacetimes
We discuss quantum inequalities for minimally coupled scalar fields in static
spacetimes. These are inequalities which place limits on the magnitude and
duration of negative energy densities. We derive a general expression for the
quantum inequality for a static observer in terms of a Euclidean two-point
function. In a short sampling time limit, the quantum inequality can be written
as the flat space form plus subdominant correction terms dependent upon the
geometric properties of the spacetime. This supports the use of flat space
quantum inequalities to constrain negative energy effects in curved spacetime.
Using the exact Euclidean two-point function method, we develop the quantum
inequalities for perfectly reflecting planar mirrors in flat spacetime. We then
look at the quantum inequalities in static de~Sitter spacetime, Rindler
spacetime and two- and four-dimensional black holes. In the case of a
four-dimensional Schwarzschild black hole, explicit forms of the inequality are
found for static observers near the horizon and at large distances. It is show
that there is a quantum averaged weak energy condition (QAWEC), which states
that the energy density averaged over the entire worldline of a static observer
is bounded below by the vacuum energy of the spacetime. In particular, for an
observer at a fixed radial distance away from a black hole, the QAWEC says that
the averaged energy density can never be less than the Boulware vacuum energy
density.Comment: 27 pages, 2 Encapsulated Postscript figures, uses epsf.tex, typeset
in RevTe
A quantum weak energy inequality for the Dirac field in two-dimensional flat spacetime
Fewster and Mistry have given an explicit, non-optimal quantum weak energy
inequality that constrains the smeared energy density of Dirac fields in
Minkowski spacetime. Here, their argument is adapted to the case of flat,
two-dimensional spacetime. The non-optimal bound thereby obtained has the same
order of magnitude, in the limit of zero mass, as the optimal bound of Vollick.
In contrast with Vollick's bound, the bound presented here holds for all
(non-negative) values of the field mass.Comment: Version published in Classical and Quantum Gravity. 7 pages, 1 figur
- …