13,118 research outputs found

    Feasibility of Hair Collection for Cortisol Measurement in Population Research on Adolescent Health

    Get PDF
    Background: Black–White disparities in adolescent health are widespread and thought to be explained, in part, by exposure to chronic stress. Cortisol assayed from hair is increasingly recognized as a valid and reliable measure for chronic physiological stress, but the feasibility of collecting hair among large probability samples of diverse adolescents is unknown. Purpose: The aim of the study was to investigate participation in hair collection for cortisol analyses in a probability sample of racially and socioeconomically diverse adolescents, including the extent to which sociodemographic factors and adverse exposures were associated with participation. Methods: The study included a probability sample of 516 adolescents conducted in conjunction with a prospective cohort study on adolescent health. Data were collected over 1 week via in-home interviews, ecological momentary assessment, global positioning system methods, and in-home hair collection at the end of the week. Results: Of the 516 eligible youth, 471 (91.3%) participated in the hair collection. Of the 45 youth who did not provide hair samples, 18 had insufficient hair, 25 refused, and 2 did not participate for unknown reasons. Multivariable logistic regression results indicated that non-Hispanic Black youth were less likely than their non-Hispanic White peers to participate due to insufficient hair or refusal (OR = 0.24, 95% CI [0 .09, 0.60]). Despite lower rates of participation, the proportion of Black youth in the participating sample was representative of the study area. No significant differences in participation were found by other sociodemographic characteristics or adverse exposures. Conclusions: Hair collection for cortisol measurement is feasible among a probability sample of racially and socioeconomically diverse adolescents. Hair cortisol analyses may accelerate research progress to understand the biological and psychosocial bases of health disparities

    Probing the parameter space of HD 49933: a comparison between global and local methods

    Full text link
    We present two independent methods for studying the global stellar parameter space (mass M, age, initial chemical composition X_0, Z_0) of HD 49933 with seismic data. Using a local minimization and an MCMC algorithm, we obtain consistent results for the determination of the stellar properties: M = 1.1 - 1.2 M_solar, Age ~ 3.0 Gyr, Z_0 ~ 0.008. A description of the error ellipses can be defined using Singular Value Decomposition techniques, and this is validated by comparing the errors with those from the MCMC method.Comment: to be published in JPC

    Quantum measurement and decoherence

    Get PDF
    Distribution functions defined in accord with the quantum theory of measurement are combined with results obtained from the quantum Langevin equation to discuss decoherence in quantum Brownian motion. Closed form expressions for wave packet spreading and the attenuation of coherence of a pair of wave packets are obtained. The results are exact within the context of linear passive dissipation. It is shown that, contrary to widely accepted current belief, decoherence can occur at high temperature in the absence of dissipation. Expressions for the decoherence time with and without dissipation are obtained that differ from those appearing in earlier discussions

    Decoherence of electron beams by electromagnetic field fluctuations

    Full text link
    Electromagnetic field fluctuations are responsible for the destruction of electron coherence (dephasing) in solids and in vacuum electron beam interference. The vacuum fluctuations are modified by conductors and dielectrics, as in the Casimir effect, and hence, bodies in the vicinity of the beams can influence the beam coherence. We calculate the quenching of interference of two beams moving in vacuum parallel to a thick plate with permittivity ϵ(ω)=ϵ0+i4πσ/ω\epsilon(\omega)=\epsilon_{0}+i 4\pi\sigma/\omega. In case of an ideal conductor or dielectric (ϵ=)(|\epsilon|=\infty) the dephasing is suppressed when the beams are close to the surface of the plate, because the random tangential electric field EtE_{t}, responsible for dephasing, is zero at the surface. The situation is changed dramatically when ϵ0\epsilon_{0} or σ\sigma are finite. In this case there exists a layer near the surface, where the fluctuations of EtE_{t} are strong due to evanescent near fields. The thickness of this near - field layer is of the order of the wavelength in the dielectric or the skin depth in the conductor, corresponding to a frequency which is the inverse electron time of flight from the emitter to the detector. When the beams are within this layer their dephasing is enhanced and for slow enough electrons can be even stronger than far from the surface

    Wigner Distribution Function Approach to Dissipative Problems in Quantum Mechanics with emphasis on Decoherence and Measurement Theory

    Get PDF
    We first review the usefulness of the Wigner distribution functions (WDF), associated with Lindblad and pre-master equations, for analyzing a host of problems in Quantum Optics where dissipation plays a major role, an arena where weak coupling and long-time approximations are valid. However, we also show their limitations for the discussion of decoherence, which is generally a short-time phenomenon with decay rates typically much smaller than typical dissipative decay rates. We discuss two approaches to the problem both of which use a quantum Langevin equation (QLE) as a starting-point: (a) use of a reduced WDF but in the context of an exact master equation (b) use of a WDF for the complete system corresponding to entanglement at all times

    Measured quantum probability distribution functions for Brownian motion

    Full text link
    The quantum analog of the joint probability distributions describing a classical stochastic process is introduced. A prescription is given for constructing the quantum distribution associated with a sequence of measurements. For the case of quantum Brownian motion this prescription is illustrated with a number of explicit examples. In particular it is shown how the prescription can be extended in the form of a general formula for the Wigner function of a Brownian particle entangled with a heat bath.Comment: Phys. Rev. A, in pres

    Nuclear-spin relaxation of 207^{207}Pb in ferroelectric powders

    Full text link
    Motivated by a recent proposal by O. P. Sushkov and co-workers to search for a P,T-violating Schiff moment of the 207^{207}Pb nucleus in a ferroelectric solid, we have carried out a high-field nuclear magnetic resonance study of the longitudinal and transverse spin relaxation of the lead nuclei from room temperature down to 10 K for powder samples of lead titanate (PT), lead zirconium titanate (PZT), and a PT monocrystal. For all powder samples and independently of temperature, transverse relaxation times were found to be T21.5T_2\approx 1.5 ms, while the longitudinal relaxation times exhibited a temperature dependence, with T1T_1 of over an hour at the lowest temperatures, decreasing to T17T_1\approx 7 s at room temperature. At high temperatures, the observed behavior is consistent with a two-phonon Raman process, while in the low temperature limit, the relaxation appears to be dominated by a single-phonon (direct) process involving magnetic impurities. This is the first study of temperature-dependent nuclear-spin relaxation in PT and PZT ferroelectrics at such low temperatures. We discuss the implications of the results for the Schiff-moment search.Comment: 6 pages, 4 figure

    Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation

    Get PDF
    Potential biological roles of the Campylobacter jejuni genes cj0641, cj0774c and cj1663 were investigated. The proteins encoded by these genes showed sequence similarities to the phosphonate utilisation PhnH, K and L gene products of Escherichia coli. The genes cj0641, cj0774c and cj1663 were amplified from the pathogenic C. jejuni strain 81116, sequenced, and cloned into pGEM-T Easy vectors. Recombinant plasmids were used to disrupt each one of the genes by inserting a kanamycin resistance (KmR) cassette employing site-directed mutagenesis or inverse PCR. Campylobacter jejuni 81116 isogenic mutants were generated by integration of the mutated genes into the genome of the wild-type strain. The C. jejuni mutants grew on primary isolation plates, but they could not be purified by subsequent passages owing to cell death. The mutant C. jejuni strains survived and proliferated in co-cultures with wild-type bacteria or in media in which wild-type C. jejuni had been previously grown. PCR analyses of mixed wild-type/mutant cultures served to verify the presence of the mutated gene in the genome of a fraction of the total bacterial population. The data suggested that each mutation inactivated a gene essential for survival. Rates of phosphonate catabolism in lysates of E. coli strain DH5α were determined using proton nuclear magnetic resonance spectroscopy. Whole-cell lysates of the wild-type degraded phosphonoacetate, phenylphosphonate and aminomethylphosphonate. Significant differences in the rates of phosphonate degradation were observed between lysates of wild-type E. coli, and of bacteria transformed with each one of the vectors carrying one of the C. jejuni genes, suggesting that these genes were involved in phosphonate catabolism

    Thermodynamics of phantom black holes in Einstein-Maxwell-Dilaton theory

    Full text link
    A thermodynamic analysis of the black hole solutions coming from the Einstein-Maxwell-Dilaton theory (EMD) in 4D is done. By consider the canonical and grand-canonical ensemble, we apply standard method as well as a recent method known as Geometrothermodynamics (GTD). We are particularly interested in the characteristics of the so called phantom black hole solutions. We will analyze the thermodynamics of these solutions, the points of phase transition and their extremal limit. Also the thermodynamic stability is analyzed. We obtain a mismatch of the between the results of the GTD method when compared with the ones obtained by the specific heat, revealing a weakness of the method, as well as possible limitations of its applicability to very pathological thermodynamic systems. We also found that normal and phantom solutions are locally and globally unstable, unless for certain values of the coupled constant of the EMD action. We also shown that the anti-Reissner-Nordstrom solution does not posses extremal limit nor phase transition points, contrary to the Reissner-Nordstrom case.Comment: 23 pages, version accepted for publication in Physical Review

    Preferred Basis in a Measurement Process

    Get PDF
    The effect of decoherence is analysed for a free particle, interacting with an environment via a dissipative coupling. The interaction between the particle and the environment occurs by a coupling of the position operator of the particle with the environmental degrees of freedom. By examining the exact solution of the density matrix equation one finds that the density matrix becomes completely diagonal in momentum with time while the position space density matrix remains nonlocal. This establishes the momentum basis as the emergent 'preferred basis' selected by the environment which is contrary to the general expectation that position should emerge as the preferred basis since the coupling with the environment is via the position coordinate.Comment: Standard REVTeX format, 10 pages of output. Accepted for publication in Phys. Rev
    corecore