23,117 research outputs found

    Examining Collegiality and Social Justice in Academia and the Private Sector: an Exploratory SYMLOG Analysis

    Get PDF
    This research compares the perceptions of the private sector, high-technology employees to the perceptions of university faculty members regarding organizational culture, social justice and collegiality concepts. The SYMLOG assessment technique was used to record the perceptions of respondents to four different concepts of organizational culture, two different aspects of social justice and two measures of collegiality. Comparative findings of gender differences across the eight concepts raise key organizational culture, legal, measurement, governance, and social policy issues for academia and high tech organizations. The development of a conceptual framework to guide future research and a blueprint to discuss desired organizational change are highlighted

    Dynamic wormholes

    Full text link
    A new framework is proposed for general dynamic wormholes, unifying them with black holes. Both are generically defined locally by outer trapping horizons, temporal for wormholes and spatial or null for black and white holes. Thus wormhole horizons are two-way traversible, while black-hole and white-hole horizons are only one-way traversible. It follows from the Einstein equation that the null energy condition is violated everywhere on a generic wormhole horizon. It is suggested that quantum inequalities constraining negative energy break down at such horizons. Wormhole dynamics can be developed as for black-hole dynamics, including a reversed second law and a first law involving a definition of wormhole surface gravity. Since the causal nature of a horizon can change, being spatial under positive energy and temporal under sufficient negative energy, black holes and wormholes are interconvertible. In particular, if a wormhole's negative-energy source fails, it may collapse into a black hole. Conversely, irradiating a black-hole horizon with negative energy could convert it into a wormhole horizon. This also suggests a possible final state of black-hole evaporation: a stationary wormhole. The new framework allows a fully dynamical description of the operation of a wormhole for practical transport, including the back-reaction of the transported matter on the wormhole. As an example of a matter model, a Klein-Gordon field with negative gravitational coupling is a source for a static wormhole of Morris & Thorne.Comment: 5 revtex pages, 4 eps figures. Minor change which did not reach publisher

    Quantum Inequalities on the Energy Density in Static Robertson-Walker Spacetimes

    Get PDF
    Quantum inequality restrictions on the stress-energy tensor for negative energy are developed for three and four-dimensional static spacetimes. We derive a general inequality in terms of a sum of mode functions which constrains the magnitude and duration of negative energy seen by an observer at rest in a static spacetime. This inequality is evaluated explicitly for a minimally coupled scalar field in three and four-dimensional static Robertson-Walker universes. In the limit of vanishing curvature, the flat spacetime inequalities are recovered. More generally, these inequalities contain the effects of spacetime curvature. In the limit of short sampling times, they take the flat space form plus subdominant curvature-dependent corrections.Comment: 18 pages, plain LATEX, with 3 figures, uses eps

    Semiclassical Gravity Theory and Quantum Fluctuations

    Get PDF
    We discuss the limits of validity of the semiclassical theory of gravity in which a classical metric is coupled to the expectation value of the stress tensor. It is argued that this theory is a good approximation only when the fluctuations in the stress tensor are small. We calculate a dimensionless measure of these fluctuations for a scalar field on a flat background in particular cases, including squeezed states and the Casimir vacuum state. It is found that the fluctuations are small for states which are close to a coherent state, which describes classical behavior, but tend to be large otherwise. We find in all cases studied that the energy density fluctuations are large whenever the local energy density is negative. This is taken to mean that the gravitational field of a system with negative energy density, such as the Casimir vacuum, is not described by a fixed classical metric but is undergoing large metric fluctuations. We propose an operational scheme by which one can describe a fluctuating gravitational field in terms of the statistical behavior of test particles. For this purpose we obtain an equation of the form of the Langevin equation used to describe Brownian motion.Comment: In REVTEX. 20pp + 4 figures(not included, available upon request) TUTP-93-

    Lightcone fluctuations in flat spacetimes with nontrivial topology

    Get PDF
    The quantum lightcone fluctuations in flat spacetimes with compactified spatial dimensions or with boundaries are examined. The discussion is based upon a model in which the source of the underlying metric fluctuations is taken to be quantized linear perturbations of the gravitational field. General expressions are derived, in the transverse trace-free gauge, for the summation of graviton polarization tensors, and for vacuum graviton two-point functions. Because of the fluctuating light cone, the flight time of photons between a source and a detector may be either longer or shorter than the light propagation time in the background classical spacetime. We calculate the mean deviations from the classical propagation time of photons due to the changes in the topology of the flat spacetime. These deviations are in general larger in the directions in which topology changes occur and are typically of the order of the Planck time, but they can get larger as the travel distance increases.Comment: 25 pages, 5 figures, some discussions added and a few typos corrected, final version to appear in Phys. Rev.

    Bounds on negative energy densities in flat spacetime

    Get PDF
    We generalise results of Ford and Roman which place lower bounds -- known as quantum inequalities -- on the renormalised energy density of a quantum field averaged against a choice of sampling function. Ford and Roman derived their results for a specific non-compactly supported sampling function; here we use a different argument to obtain quantum inequalities for a class of smooth, even and non-negative sampling functions which are either compactly supported or decay rapidly at infinity. Our results hold in dd-dimensional Minkowski space (d≥2d\ge 2) for the free real scalar field of mass m≥0m\ge 0. We discuss various features of our bounds in 2 and 4 dimensions. In particular, for massless field theory in 2-dimensional Minkowski space, we show that our quantum inequality is weaker than Flanagan's optimal bound by a factor of 3/2.Comment: REVTeX, 13 pages and 2 figures. Minor typos corrected, one reference adde
    • …
    corecore