14,846 research outputs found

    DOTS in Aral Sea area.

    Get PDF

    Not a drop to drink in the Aral Sea.

    Get PDF

    Semiclassical Gravity Theory and Quantum Fluctuations

    Get PDF
    We discuss the limits of validity of the semiclassical theory of gravity in which a classical metric is coupled to the expectation value of the stress tensor. It is argued that this theory is a good approximation only when the fluctuations in the stress tensor are small. We calculate a dimensionless measure of these fluctuations for a scalar field on a flat background in particular cases, including squeezed states and the Casimir vacuum state. It is found that the fluctuations are small for states which are close to a coherent state, which describes classical behavior, but tend to be large otherwise. We find in all cases studied that the energy density fluctuations are large whenever the local energy density is negative. This is taken to mean that the gravitational field of a system with negative energy density, such as the Casimir vacuum, is not described by a fixed classical metric but is undergoing large metric fluctuations. We propose an operational scheme by which one can describe a fluctuating gravitational field in terms of the statistical behavior of test particles. For this purpose we obtain an equation of the form of the Langevin equation used to describe Brownian motion.Comment: In REVTEX. 20pp + 4 figures(not included, available upon request) TUTP-93-

    Minimum and maximum against k lies

    Full text link
    A neat 1972 result of Pohl asserts that [3n/2]-2 comparisons are sufficient, and also necessary in the worst case, for finding both the minimum and the maximum of an n-element totally ordered set. The set is accessed via an oracle for pairwise comparisons. More recently, the problem has been studied in the context of the Renyi-Ulam liar games, where the oracle may give up to k false answers. For large k, an upper bound due to Aigner shows that (k+O(\sqrt{k}))n comparisons suffice. We improve on this by providing an algorithm with at most (k+1+C)n+O(k^3) comparisons for some constant C. The known lower bounds are of the form (k+1+c_k)n-D, for some constant D, where c_0=0.5, c_1=23/32=0.71875, and c_k=\Omega(2^{-5k/4}) as k goes to infinity.Comment: 11 pages, 3 figure

    Stochastic entropy production for continuous measurements of an open quantum system

    Get PDF
    We investigate the total stochastic entropy production of a two-level bosonic open quantum system under protocols of time dependent coupling to a harmonic environment. These processes are intended to represent the measurement of a system observable, and consequent selection of an eigenstate, whilst the system is also subjected to thermalising environmental noise. The entropy production depends on the evolution of the system variables and their probability density function, and is expressed through system and environmental contributions. The continuous stochastic dynamics of the open system is based on the Markovian approximation to the exact, noise-averaged stochastic Liouville-von Neumann equation, unravelled through the addition of stochastic environmental disturbance mimicking a measuring device. Under the thermalising influence of time independent coupling to the environment, the mean rate of entropy production vanishes asymptotically, indicating equilibrium. In contrast, a positive mean production of entropy as the system responds to time dependent coupling characterises the irreversibility of quantum measurement, and a comparison of its production for two coupling protocols, representing connection to and disconnection from the external measuring device, satisfies a detailed fluctuation theorem.Comment: 25 pages, 7 figure

    A transit timing analysis of nine RISE light curves of the exoplanet system TrES-3

    Get PDF
    We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte-Carlo analysis was used to determine the planet-star radius ratio and inclination of the system, which were found to be Rp/Rstar=0.1664^{+0.0011}_{-0.0018} and i = 81.73^{+0.13}_{-0.04} respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi^2 = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage, or have clear systematics. A new ephemeris was calculated using the transit times, and was found to be T_c(0) = 2454632.62610 +- 0.00006 HJD and P = 1.3061864 +- 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed for sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming the additional planet is in an initially circular orbit.Comment: 21 pages, 4 figures, Accepted for publication in Ap

    The Possible z=0.83 Precursors of z=0 M* Early-type Cluster Galaxies

    Full text link
    We examine the distribution of stellar masses of galaxies in MS 1054-03 and RX J0152.7-1357, two X-ray selected clusters of galaxies at z=0.83. Our stellar mass estimates, from spectral energy distribution fitting, reproduce the dynamical masses as measured from velocity dispersions and half-light radii with a scatter of 0.2 dex in the mass for early-type galaxies. When we restrict our sample of members to high stellar masses, > 1e11.1 Msun (M* in the Schechter mass function for cluster galaxies), we find that the fraction of early-type galaxies is 79 +/- 6% at z=0.83 and 87 +/- 6% at z=0.023 for the Coma cluster, consistent with no evolution. Previous work with luminosity-selected samples finds that the early-type fraction in rich clusters declines from =~80% at z=0 to =~60% at z=0.8. The observed evolution in the early-type fraction from luminosity-selected samples must predominately occur among sub-M* galaxies. As M* for field and group galaxies, especially late-types, is below M* for clusters galaxies, infall could explain most of the recent early-type fraction growth. Future surveys could determine the morphological distributions of lower mass systems which will confirm or refute this explanation.Comment: 5 pages in emulate ApJ format with three color figures. Accepted for publication in ApJ Letters, v642n2. Updated to correct grammatical and typographic errors found by the journa
    corecore