20,881 research outputs found

    Pricing of drugs and donations: options for sustainable equity pricing.

    Get PDF
    Effective medicines exist to treat or alleviate many diseases which predominate in the developing world and cause high mortality and morbidity rates. Price should not be an obstacle preventing access to these medicines. Increasingly, drug donations have been established by drug companies, but these are often limited in time, place or use. Measures exist which are more sustainable and will have a greater positive impact on people's health. Principally, these are encouraging generic competition; adopting into national legislation and implementing TRIPS safeguards to gain access to cheaper sources of drugs; differential pricing; creating high volume or high demand through global and regional procurement; and supporting the production of quality generic drugs by developing countries through voluntary licenses if needed, and facilitating technology transfer

    Gravitons and Lightcone Fluctuations II: Correlation Functions

    Get PDF
    A model of a fluctuating lightcone due to a bath of gravitons is further investigated. The flight times of photons between a source and a detector may be either longer or shorter than the light propagation time in the background classical spacetime, and will form a Gaussian distribution centered around the classical flight time. However, a pair of photons emitted in rapid succession will tend to have correlated flight times. We derive and discuss a correlation function which describes this effect. This enables us to understand more fully the operational significance of a fluctuating lightcone. Our results may be combined with observational data on pulsar timing to place some constraints on the quantum state of cosmological gravitons.Comment: 16 pages and two figures, uses eps

    Quantum Inequalities on the Energy Density in Static Robertson-Walker Spacetimes

    Get PDF
    Quantum inequality restrictions on the stress-energy tensor for negative energy are developed for three and four-dimensional static spacetimes. We derive a general inequality in terms of a sum of mode functions which constrains the magnitude and duration of negative energy seen by an observer at rest in a static spacetime. This inequality is evaluated explicitly for a minimally coupled scalar field in three and four-dimensional static Robertson-Walker universes. In the limit of vanishing curvature, the flat spacetime inequalities are recovered. More generally, these inequalities contain the effects of spacetime curvature. In the limit of short sampling times, they take the flat space form plus subdominant curvature-dependent corrections.Comment: 18 pages, plain LATEX, with 3 figures, uses eps

    A quantum weak energy inequality for the Dirac field in two-dimensional flat spacetime

    Full text link
    Fewster and Mistry have given an explicit, non-optimal quantum weak energy inequality that constrains the smeared energy density of Dirac fields in Minkowski spacetime. Here, their argument is adapted to the case of flat, two-dimensional spacetime. The non-optimal bound thereby obtained has the same order of magnitude, in the limit of zero mass, as the optimal bound of Vollick. In contrast with Vollick's bound, the bound presented here holds for all (non-negative) values of the field mass.Comment: Version published in Classical and Quantum Gravity. 7 pages, 1 figur

    A Causal Algebra for Liouville Exponentials

    Full text link
    A causal Poisson bracket algebra for Liouville exponentials on a cylinder is derived using an exchange algebra for free fields describing the in and out asymptotics. The causal algebra involves an even number of space-time points with a minimum of four. A quantum realisation of the algebra is obtained which preserves causality and the local form of non-equal time brackets.Comment: 10 page

    Cosmological and Black Hole Horizon Fluctuations

    Get PDF
    The quantum fluctuations of horizons in Robertson-Walker universes and in the Schwarzschild spacetime are discussed. The source of the metric fluctuations is taken to be quantum linear perturbations of the gravitational field. Lightcone fluctuations arise when the retarded Green's function for a massless field is averaged over these metric fluctuations. This averaging replaces the delta-function on the classical lightcone with a Gaussian function, the width of which is a measure of the scale of the lightcone fluctuations. Horizon fluctuations are taken to be measured in the frame of a geodesic observer falling through the horizon. In the case of an expanding universe, this is a comoving observer either entering or leaving the horizon of another observer. In the black hole case, we take this observer to be one who falls freely from rest at infinity. We find that cosmological horizon fluctuations are typically characterized by the Planck length. However, black hole horizon fluctuations in this model are much smaller than Planck dimensions for black holes whose mass exceeds the Planck mass. Furthermore, we find black hole horizon fluctuations which are sufficiently small as not to invalidate the semiclassical derivation of the Hawking process.Comment: 22 pages, Latex, 4 figures, uses eps

    Focusing Vacuum Fluctuations

    Get PDF
    The focusing of the vacuum modes of a quantized field by a parabolic mirror is investigated. We use a geometric optics approximation to calculate the energy density and mean squared field averages for scalar and electromagnetic fields near the focus. We find that these quantities grow as an inverse power of the distance to the focus. There is an attractive Casimir-Polder force on an atom which will draw it into the focus. Some estimates of the magnitude of the effects of this focusing indicate that it may be observable.Comment: 20 pages, 4 figures; typos corrected, two refs and some comments adde

    Stochastic Spacetime and Brownian Motion of Test Particles

    Full text link
    The operational meaning of spacetime fluctuations is discussed. Classical spacetime geometry can be viewed as encoding the relations between the motions of test particles in the geometry. By analogy, quantum fluctuations of spacetime geometry can be interpreted in terms of the fluctuations of these motions. Thus one can give meaning to spacetime fluctuations in terms of observables which describe the Brownian motion of test particles. We will first discuss some electromagnetic analogies, where quantum fluctuations of the electromagnetic field induce Brownian motion of test particles. We next discuss several explicit examples of Brownian motion caused by a fluctuating gravitational field. These examples include lightcone fluctuations, variations in the flight times of photons through the fluctuating geometry, and fluctuations in the expansion parameter given by a Langevin version of the Raychaudhuri equation. The fluctuations in this parameter lead to variations in the luminosity of sources. Other phenomena which can be linked to spacetime fluctuations are spectral line broadening and angular blurring of distant sources.Comment: 15 pages, 3 figures. Talk given at the 9th Peyresq workshop, June 200
    • …
    corecore