1,172 research outputs found

    Engaging new dimensions in nonlinear optical spectroscopy using auxiliary beams of light

    Get PDF
    By applying a sufficiently intense beam of off-resonant light, simultaneously with a conventional excitation source beam, the efficiencies of one- and two-photon absorption processes may be significantly modified. The nonlinear mechanism that is responsible, known as laser modified absorption, is fully described by a quantum electrodynamical analysis. The origin of the process, which involves stimulated forward Rayleigh-scattering of the auxiliary beam, relates to higher order terms which are secured by a time-dependent perturbation treatment. These terms, usually inconsequential when a single beam of light is present, become prominent under the secondary optical stimulus – even with levels of intensity that are moderate by today’s standards. Distinctive kinds of behaviour may be observed for chromophores fixed in a static arrangement, or for solution- or gas-phase molecules whose response is tempered by a rotational average of orientations. In each case the results exhibit an interplay of factors involving the beam polarisations and the molecular electronic response. Special attention is given to interesting metastable states that are symmetry forbidden by one- or two-photon absorption. Such states may be accessible, and thus become populated, on input of the auxiliary beam. For example, in the one-photon absorption case, terms arise that are more usually associated with three-photon processes, corresponding to very different selection rules. Other kinds of metastable state also arise in the two-photon process, and measuring the effect of applying the stimulus beam to absorbances of such character adds a new dimension to the information content of the associated spectroscopy. Finally, based on these novel forms of optical nonlinearity, there may be new possibilities for quantum non-demolition measurements

    On the detection of characteristic optical emission from electronically coupled nanoemitters

    Get PDF
    Optical emission from an electronically coupled pair of nanoemitters is investigated, in a new theoretical development prompted by experimental work on oriented semiconductor polymer nanostructures. Three physically distinct mechanisms for photon emission by such a pair, positioned in the near-field, are identified: emission from a pairdelocalized exciton state, emission that engages electrodynamic coupling through quantum interference, and correlated photon emission from the two components of the pair. Each possibility is investigated, in detail, by examination of the emission signal via explicit coupling of the nanoemitter pair with a photodetector, enabling calculations to give predictive results in a form directly tailored for experiment. The analysis incorporates both near- and far-field properties (determined from the detector-pair displacement), so that the framework is applicable not only to a conventional remote detector, but also a near-field microscope setup. The results prove strongly dependent on geometry and selection rules. This work paves the way for a broader investigation of pairwise coupling effects in the optical emission from structured nanoemitter arrays

    Hyper-Rayleigh scattering in centrosymmetric systems

    Get PDF
    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E13, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E12M1 and E12E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E12E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties

    Two-loop effective potential for a general renormalizable theory and softly broken supersymmetry

    Get PDF
    I compute the two-loop effective potential in the Landau gauge for a general renormalizable field theory in four dimensions. Results are presented for the \bar{MS} renormalization scheme based on dimensional regularization, and for the \bar{DR} and \bar{DR}' schemes based on regularization by dimensional reduction. The last of these is appropriate for models with softly broken supersymmetry, such as the Minimal Supersymmetric Standard Model. I find the parameter redefinition which relates the \bar{DR} and \bar{DR}' schemes at two-loop order. I also discuss the renormalization group invariance of the two-loop effective potential, and compute the anomalous dimensions for scalars and the beta function for the vacuum energy at two-loop order in softly broken supersymmetry. Several illustrative examples and consistency checks are included.Comment: 38 pages. Typos in equations (3.5), (3.11), and (6.3) are fixed. Explicit claim of renormalization group invariance in the general case of softly-broken supersymmetry is added. Additional discussion of cases of multiple simple or U(1) groups. Equations in Appendix B rewritten in a more useful for

    Signatures of exciton coupling in paired nanoemitters

    Get PDF
    An exciton formed by the delocalized electronic excitation of paired nanoemitters is interpreted in terms of the electromagnetic emission of the pair and their mutual coupling with a photodetector. A formulation directly tailored for fluorescence detection is identified, giving results which are strongly dependent on geometry and selection rules. Signature symmetric and antisymmetric combinations are analyzed and their distinctive features identified

    Nonlocalized Generation of Correlated Photon Pairs in Degenerate Down-Conversion

    Get PDF
    The achievement of optimum conversion efficiency in conventional spontaneous parametric down- conversion requires consideration of quantum processes that entail multisite electrodynamic coupling, actively taking place within the conversion material. The physical mechanism, which operates through virtual photon propagation, provides for photon pairs to be emitted from spatially separated sites of photon interaction; occasionally pairs are produced in which each photon emerges from a different point in space. The extent of such nonlocalized generation is influenced by individual variations in both distance and phase correlation. Mathematical analysis of the global contributions from this mechanism provides a quantitative measure for a degree of positional uncertainty in the origin of down-converted emission

    Effective Lagrangian for self-interacting scalar field theories in curved spacetime

    Get PDF
    We consider a self-interacting scalar field theory in a slowly varying gravitational background field. Using zeta-function regularization and heat-kernel techniques, we derive the one-loop effective Lagrangian up to second order in the variation of the background field and up to quadratic terms in the curvature tensors. Specializing to different spacetimes of physical interest, the influence of the curvature on the phase transition is considered.Comment: 14 pages, LaTex, UTF 29
    • 

    corecore