1,174 research outputs found

    Higher order coherence of exciton-polariton condensates

    Full text link
    The second and third order coherence functions g(n)(0)(n=2and3)g^{(n)}(0) (n=2 {\rm and} 3) of an exciton-polariton condensate is measured and compared to the theory. Contrary to an ideal photon laser, deviation from unity in the second and third order coherence functions is observed, thus showing a bunching effect, but not the characteristics of a standard thermal state with g(n)(0)=n!g^{(n)}(0)=n!. The increase of bunching with the order of the coherence function, g(3)(0)>g(2)(0)>1g^{(3)}(0) > g^{(2)}(0)>1, indicates that the polariton condensate is different from coherent state, number state and thermal state. The experimental results are in agreement with the theoretical model where polariton-polariton and polariton-phonon interactions are responsible for the loss of temporal coherence.Comment: 4 pages, 4 figure

    Stochastic Formation of Polariton Condensates in Two Degenerate Orbital States

    Full text link
    We explore the exciton-polariton condensation in the two degenerate orbital states. In the honeycomb lattice potential, at the third band we have two degenerate vortex-antivortex lattice states at the inequivalent K and K'-points. We have observed energetically degenerate condensates within the linewidth ~ 0.3 meV, and directly measured the vortex-antivortex lattice phase order of the order parameter. We have also observed the intensity anticorrelation between polariton condensates at the K- and K'-points. We relate this intensity anticorrelation to the dynamical feature of polariton condensates induced by the stochastic relaxation from the common particle reservoir.Comment: 5 pages, 4 figure

    Large quantum dots with small oscillator strength

    Full text link
    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size and predict a very large oscillator strength due to Coulomb effects. This is in stark contrast to the measured oscillator strength, which turns out to be much below the upper limit imposed by the strong confinement model. We attribute these findings to exciton localization in local potential minima arising from alloy intermixing inside the quantum dots.Comment: 4 pages, 3 figures, submitte

    Dephasing of Mollow Triplet Sideband Emission of a Resonantly Driven Quantum Dot in a Microcavity

    Full text link
    Detailed properties of resonance fluorescence from a single quantum dot in a micropillar cavity are investigated, with particular focus on emission coherence in dependence on optical driving field power and detuning. Power-dependent series over a wide range could trace characteristic Mollow triplet spectra with large Rabi splittings of Ω15|\Omega| \leq 15 GHz. In particular, the effect of dephasing in terms of systematic spectral broadening Ω2\propto \Omega^2 of the Mollow sidebands is observed as a strong fingerprint of excitation-induced dephasing. Our results are in excellent agreement with predictions of a recently presented model on phonon-dressed QD Mollow triplet emission in the cavity-QED regime

    22-GHz Modulation Bandwidth of Long Cavity DBR Laser by Using a Weakly Laterally Coupled Grating Fabricated by Focused Ion Beam Lithography

    Get PDF
    A 22-GHz directly modulated 3-dB bandwidth could be obtained by 1.3-mm-long weakly laterally coupled distributed Bragg reflector lasers fabricated by focused ion beam lithography. In addition to a high bandwidth, the lasers show a stable emission spectrum with side-mode suppression ratios of more than 40 dB and output powers exceeding 20 mW

    Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas

    Get PDF
    We observe quasi-long range coherence in a two-dimensional condensate of exciton-polaritons. Our measurements are the first to confirm that the spatial correlation algebraically decays with a slow power-law, whose exponent quantitatively behaves as predicted by the Berezinskii-Kosterlitz-Thouless theory. The exciton-polaritons are created by non-resonant optical pumping of a micro-cavity sample with embedded GaAs quantum-wells at liquid helium temperature. Michelson interference is used to measure the coherence of the photons emitted by decaying exciton-polaritons

    Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes

    Get PDF
    We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots' spontaneous emission rates as the two-dimensional bandgap is tuned through their emission frequencies. The measured band edges are in full agreement with theoretical predictions. We characterize the multi-exponential decay curves by their mean decay time and find enhancement of the spontaneous emission at the bandgap edges and strong inhibition inside the bandgap in good agreement with local density of states calculations.Comment: 9 pages (preprint), 3 figure

    Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells : Spectroscopic experiment versus 10-band k.p modeling

    Get PDF
    Optical transitions in GaAs1-xNx/GaAs quantum wells (QWs) have been probed by two complementary techniques, modulation spectroscopy in a form of photoreflectance and surface photovoltage spectroscopy. Transition energies in QWs of various widths and N contents have been compared with the results of band structure calculations based on the 10-band k.p Hamiltonian. Due to the observation of higher order transitions in the measured spectra, the band gap discontinuities at the GaAsN/GaAs interface and the electron effective masses could be determined, both treated as semi-free parameters to get the best matching between the theoretical and experimental energies. We have obtained the chemical conduction band offset values of 86% for x = 1.2% and 83% for x = 2.2%, respectively. For these determined band offsets, the electron effective masses equal to about 0.09 m(o) in QWs with 1.2% N and 0.15 m(o) for the case of larger N content of 2.2%.Publisher PDFPeer reviewe
    corecore