12,525 research outputs found
The neutron polaron as a constraint on nuclear density functionals
We study the energy of an impurity (polaron) that interacts strongly in a sea
of fermions when the effective range of the impurity-fermion interaction
becomes important, thereby mapping the Fermi polaron of condensed matter
physics and ultracold atoms to strongly interacting neutrons. We present
Quantum Monte Carlo results for this neutron polaron, and compare these with
effective field theory calculations that also include contributions beyond the
effective range. We show that state-of-the-art nuclear density functionals vary
substantially and generally underestimate the neutron polaron energy. Our
results thus provide constraints for adjusting the time-odd components of
nuclear density functionals to better characterize polarized systems.Comment: 5 pages, 3 figures; v2 corresponds to the published versio
Reviewing the effects of food provisioning on wildlife immunity
While urban expansion increasingly encroaches on natural habitats, many wildlife species capitalize on anthropogenic food resources, which have the potential to both positively and negatively influence their responses to infection. Here we examine how food availability and key nutrients have been reported to shape innate and adaptive immunity in wildlife by drawing from field-based studies, as well as captive and food restriction studies with wildlife species. Examples of food provisioning and key nutrients enhancing immune function were seen across the three study type distinctions, as were cases of trace metals and pharmaceuticals impairing the immunity of wildlife species. More generally, food provisioning in field studies tended to increase innate and adaptive responses to certain immune challenges, whereas patterns were less clear in captive studies. Mild food restriction often enhanced, whereas severe food restriction frequently impaired immunity. However, to enable stronger conclusions we stress a need for further research, especially field studies, and highlight the importance of integrating nutritional manipulation, immune challenge, and functional outcomes. Despite current gaps in research on this topic, modern high throughput molecular approaches are increasingly feasible for wildlife studies and offer great opportunities to better understand human influences on wildlife health.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'
Bulge Globular Clusters in Spiral Galaxies
There is now strong evidence that the metal-rich globular clusters (GC) near
the center of our Galaxy are associated with the Galactic bulge rather than the
disk as previously thought. Here we extend the concept of bulge GCs to the GC
systems of nearby spiral galaxies. In particular, the kinematic and metallicity
properties of the GC systems favor a bulge rather than a disk origin. The
number of metal-rich GCs normalized by the bulge luminosity is roughly constant
(i.e. bulge S_N ~ 1) in nearby spirals, and this value is similar to that for
field ellipticals when only the red (metal--rich) GCs are considered. We argue
that the metallicity distributions of GCs in spiral and elliptical galaxies are
remarkably similar, and that they obey the same correlation of mean GC
metallicity with host galaxy mass. We further suggest that the metal-rich GCs
in spirals are the direct analogs of the red GCs seen in ellipticals. The
formation of a bulge/spheroidal stellar system is accompanied by the formation
of metal-rich GCs. The similarities between GC systems in spiral and elliptical
galaxies appear to be greater than the differences.Comment: 5 pages, Latex, 2 figures, 1 table, Accepted for publication in ApJ
Letter
Formation of the Galactic globular clusters with He-rich stars in low-mass halos virialized at high redshift
Recent observations have reported that the Galactic globular clusters (GCs)
with unusually extended horizontal-branch (EHB) morphologies show a
significantly lower velocity dispersion compared with that of the entire
Galactic GC system. We consider that the observed distinctive kinematics of GCs
with EHB has valuable information on the formation epochs of GCs and
accordingly discuss this observational result based on cosmological N-body
simulations with a model of GC formation. We assume that GCs in galaxies were
initially formed in low-mass halos at high redshifts and we investigate final
kinematics of GCs in their host halos at . We find that GCs formed in
halos virialized at z>10 show lower velocity dispersions on average than those
formed at z>6 for halos with GCs at z=0. We thus suggest that the origin of the
observed lower velocity dispersion for the Galactic GCs with EHBs is closely
associated with earlier formation epochs (z>10) of halos initially hosting the
GCs in the course of the Galaxy formation. Considering that the origin of EHBs
can be due to the presence of helium-enhanced second-generation stars in GCs,
we discuss the longstanding second parameter problem of GCs in the context of
different degrees of chemical pollution in GC-forming gas clouds within
low-mass halos virialized at different redshifts.Comment: 5 pages, 3 figures, accepted by MNRAS Letter
Mirror Map as Generating Function of Intersection Numbers: Toric Manifolds with Two K\"ahler Forms
In this paper, we extend our geometrical derivation of expansion coefficients
of mirror maps by localization computation to the case of toric manifolds with
two K\"ahler forms. Especially, we take Hirzebruch surfaces F_{0}, F_{3} and
Calabi-Yau hypersurface in weighted projective space P(1,1,2,2,2) as examples.
We expect that our results can be easily generalized to arbitrary toric
manifold.Comment: 45 pages, 2 figures, minor errors are corrected, English is refined.
Section 1 and Section 2 are enlarged. Especially in Section 2, confusion
between the notion of resolution and the notion of compactification is
resolved. Computation under non-zero equivariant parameters are added in
Section
Characterization of high-dimensional entangled systems via mutually unbiased measurements
Mutually unbiased bases (MUBs) play a key role in many protocols in quantum
science, such as quantum key distribution. However, defining MUBs for arbitrary
high-dimensional systems is theoretically difficult, and measurements in such
bases can be hard to implement. We show experimentally that efficient quantum
state reconstruction of a high-dimensional multi-partite quantum system can be
performed by considering only the MUBs of the individual parts. The state
spaces of the individual subsystems are always smaller than the state space of
the composite system. Thus, the benefit of this method is that MUBs need to be
defined for the small Hilbert spaces of the subsystems rather than for the
large space of the overall system. This becomes especially relevant where the
definition or measurement of MUBs for the overall system is challenging. We
illustrate this approach by implementing measurements for a high-dimensional
system consisting of two photons entangled in the orbital angular momentum
(OAM) degree of freedom, and we reconstruct the state of this system for
dimensions of the individual photons from d=2 to 5.Comment: 8 page
Virtual Structure Constants as Intersection Numbers of Moduli Space of Polynomial Maps with Two Marked Points
In this paper, we derive the virtual structure constants used in mirror
computation of degree k hypersurface in CP^{N-1}, by using localization
computation applied to moduli space of polynomial maps from CP^{1} to CP^{N-1}
with two marked points. We also apply this technique to non-nef local geometry
O(1)+O(-3)->CP^{1} and realize mirror computation without using Birkhoff
factorization.Comment: 10 pages, latex, a minor change in Section 4, English is refined,
Some typing errors in Section 3 are correcte
Damp Mergers: Recent Gaseous Mergers without Significant Globular Cluster Formation?
Here we test the idea that new globular clusters (GCs) are formed in the same
gaseous ("wet") mergers or interactions that give rise to the young stellar
populations seen in the central regions of many early-type galaxies. We compare
mean GC colors with the age of the central galaxy starburst. The red GC
subpopulation reveals remarkably constant mean colors independent of galaxy
age. A scenario in which the red GC subpopulation is a combination of old and
new GCs (formed in the same event as the central galaxy starburst) can not be
ruled out; although this would require an age-metallicity relation for the
newly formed GCs that is steeper than the Galactic relation. However, the data
are also well described by a scenario in which most red GCs are old, and few,
if any, are formed in recent gaseous mergers. This is consistent with the old
ages inferred from some spectroscopic studies of GCs in external systems. The
event that induced the central galaxy starburst may have therefore involved
insufficient gas mass for significant GC formation. We term such gas-poor
events "damp" mergers.Comment: 17 pages, 5 figures, ApJ accepte
Extending the Globular Cluster System-Halo Mass Relation to the Lowest Galaxy Masses
High mass galaxies, with halo masses , reveal
a remarkable near-linear relation between their globular cluster (GC) system
mass and their host galaxy halo mass. Extending this relation to the mass range
of dwarf galaxies has been problematic due to the difficulty in measuring
independent halo masses. Here we derive new halo masses based on stellar and HI
gas kinematics for a sample of nearby dwarf galaxies with GC systems. We find
that the GC system mass--halo mass relation for galaxies populated by GCs holds
from halo masses of down to below
, although there is a substantial increase in scatter
towards low masses. In particular, three well-studied ultra diffuse galaxies,
with dwarf-like stellar masses, reveal a wide range in their GC-to-halo mass
ratios. We compare our GC system--halo mass relation to the recent model of El
Badry et al., finding that their fiducial model does not reproduce our data in
the low mass regime. This may suggest that GC formation needs to be more
efficient than assumed in their model, or it may be due to the onset of
stochastic GC occupation in low mass halos. Finally, we briefly discuss the
stellar mass-halo mass relation for our low mass galaxies with GCs, and we
suggest some nearby dwarf galaxies for which searches for GCs may be fruitful.Comment: 16 pages, 5 figures, accepted for publication in MNRA
- …