137 research outputs found

    Supersymmetric Runge-Lenz-Pauli vector for Dirac vortex in topological insulators and graphene

    Full text link
    The Dirac mass-vortex at the surface of a topological insulator or in graphene is considered. Within the linear approximation for the vortex amplitude's radial dependence, the spectrum is a series of degenerate bound states, which can be classified by a set of accidental SU(2) and supersymmetry generators (I. F. Herbut and C.-K. Lu, Phys. Rev. B 83 125412 (2011)). Here we discuss further the properties and manifestations of the supersymmetry of the vortex Hamiltonian, and point out some interesting analogies to the Runge-Lenz-Pauli vector in the non-relativistic hydrogen atom. Symmetry breaking effects due to a finite chemical potential, and the Zeeman field are also analyzed. We find that a residual accidental degeneracy remains only in the special case of equal magnitudes of both terms, whereas otherwise it becomes removed entirely.Comment: revised version with added reference and a new paragraph on interpretation of two-velocity Weyl fermions realized in 2D optical lattice; to appear in J Phys

    A general formula of the effective potential in 5D SU(N) gauge theory on orbifold

    Full text link
    We show a general formula of the one loop effective potential of the 5D SU(N) gauge theory compactified on an orbifold, S1/Z2S^1/Z_2. The formula shows the case when there are fundamental, (anti-)symmetric tensor and adjoint representational bulk fields. Our calculation method is also applicable when there are bulk fields belonging to higher dimensional representations. The supersymmetric version of the effective potential with Scherk-Schwarz breaking can be obtained straightforwardly. We also show some examples of effective potentials in SU(3), SU(5) and SU(6) models with various boundary conditions, which are reproduced by our general formula.Comment: 22 pages;minor corrections;references added;typos correcte

    One-Loop Maximal Helicity Violating Amplitudes in N=4 Super Yang-Mills Theories

    Full text link
    One-loop maximal helicity violating (MHV) amplitudes in N=4 super Yang-Mills (SYM) theories are analyzed, using the prescription of Cachazo, Svrcek, and Witten (CSW). The relations between leading N_c amplitudes A_{n;1} and sub-leading amplitudes A_{n;c} obtained by the CSW prescription are found to be identical to those obtained from conventional field theory calculations. Combining with existing results, this establishes the validity of the CSW prescription to one-loop in the calculation of MHV amplitudes in N=4 SYM theories of finite N_c.Comment: Minor changes and typos fixed. Published version in JHE

    Holographic RG Flows and Universal Structures on the Coulomb Branch of N=2 Supersymmetric Large n Gauge Theory

    Full text link
    We report on our results of D3-brane probing a large class of generalised type IIB supergravity solutions presented very recently in the literature. The structure of the solutions is controlled by a single non-linear differential equation. These solutions correspond to renormalisation group flows from pure N=4 supersymmetric gauge theory to an N=2 gauge theory with a massive adjoint scalar. The gauge group is SU(n) with n large. After presenting the general result, we focus on one of the new solutions, solving for the specific coordinates needed to display the explicit metric on the moduli space. We obtain an appropriately holomorphic result for the coupling. We look for the singular locus, and interestingly, the final result again manifests itself in terms of a square root branch cut on the complex plane, as previously found for a set of solutions for which the details are very different. This, together with the existence of the single simple non-linear differential equation, is further evidence in support of an earlier suggestion that there is a very simple model --perhaps a matrix model with relation to the Calogero-Moser integrable system-- underlying this gauge theory physics.Comment: 14 pages, LaTeX, 1 figur

    Multi-Center non-BPS Black Holes - the Solution

    Full text link
    We construct multi-center, non-supersymmetric four-dimensional solutions describing a rotating anti-D6-D2 black hole and an arbitrary number of D4-D2-D0 black holes in a line. These solutions correspond to an arbitrary number of extremal non-BPS black rings in a Taub-NUT space with a rotating three-charge black hole in the middle. The positions of the centers are determined by solving a set of "bubble" or "integrability" equations that contain cubic polynomials of the inter-center distance, and that allow scaling solutions even when the total four-dimensional angular momentum of the scaling centers is non-zero.Comment: 16 pages, LaTe

    Amide bond formation with a new fluorous carbodiimide: Separation by reverse fluorous solid-phase extraction

    No full text
    A new fluorous carbodiimide is introduced along with a convenient procedure for amide coupling reactions. Reactions of acids and amines under standard conditions for carbodiimide couplings, followed by simple reverse fluorous solid-phase extraction (FSPE) over standard silica gel, provide the target amide products in good yields and purities. The use of HFE-7100 as a fluorous solvent is crucial for the success of the reverse FSPE. © 2007 American Chemical Society

    Multi-Criteria Mapping

    No full text
    • …
    corecore