1 research outputs found
Large and Almost Maximal Neutrino Mixing within the Type II See-Saw Mechanism
Within the type II see-saw mechanism the light neutrino mass matrix is given
by a sum of a direct (or triplet) mass term and the conventional (type I)
see-saw term. Both versions of the see-saw mechanism explain naturally small
neutrino masses, but the type II scenario offers interesting additional
possibilities to explain large or almost maximal or vanishing mixings which are
discussed in this paper. We first introduce ``type II enhancement'' of neutrino
mixing, where moderate cancellations between the two terms can lead to large
neutrino mixing even if all individual mass matrices and terms generate small
mixing. However, nearly maximal or vanishing mixings are not naturally
explained in this way, unless there is a certain initial structure (symmetry)
which enforces certain elements of the matrices to be identical or related in a
special way. We therefore assume that the leading structure of the neutrino
mass matrix is the triplet term and corresponds to zero U_{e3} and maximal
theta_{23}. Small but necessary corrections are generated by the conventional
see-saw term. Then we assume that one of the two terms corresponds to an
extreme mixing scenario, such as bimaximal or tri-bimaximal mixing. Deviations
from this scheme are introduced by the second term. One can mimic Quark-Lepton
Complementarity in this way. Finally, we note that the neutrino mass matrix for
tri-bimaximal mixing can be -- depending on the mass hierarchy -- written as a
sum of two terms with simple structure. Their origin could be the two terms of
type II see-saw.Comment: 25 pages. Comments and references added, to appear in JHE
