182 research outputs found

    Duality violations and spectral sum rules

    Full text link
    We study the issue of duality violations in the VV-AA vacuum polarization function in the chiral limit. This is done with the help of a model with an expansion in inverse powers of the number of colors, Nc, allowing us to consider resonances with a finite width. Due to these duality violations, the Operator Product Expansion (OPE) and the moments of the spectral function (e.g. the Weinberg sum rules) do not match at finite momentum, and we analyze this difference in detail. We also perform a comparative study of many of the different methods proposed in the literature for the extraction of the OPE parameters and find that, when applied to our model, they all fare quite similarly. In fact, the model strongly suggests that a significant improvement in precision can only be expected after duality violations are included. To this end, we propose a method to parameterize these duality violations. The method works quite well for the model, and we hope that it may also be useful in future determinations of OPE parameters in QCD.Comment: 29 pages, 9 figures, LateX file. Small changes to match journal versio

    Orbital order out of spin disorder: How to measure the orbital gap

    Full text link
    The interplay between spin and orbital degrees of freedom in the Mott-Hubbard insulator is studied by considering an orbitally degenerate superexchange model. We argue that orbital order and the orbital excitation gap in this model are generated through the order-from-disorder mechanism known previously from frustrated spin models. We propose that the orbital gap should show up indirectly in the dynamical spin structure factor; it can therefore be measured using the conventional inelastic neutron scattering method

    Langevin dynamics of the Lebowitz-Percus model

    Get PDF
    We revisit the hard-spheres lattice gas model in the spherical approximation proposed by Lebowitz and Percus (J. L. Lebowitz, J. K. Percus, Phys. Rev.{\ 144} (1966) 251). Although no disorder is present in the model, we find that the short-range dynamical restrictions in the model induce glassy behavior. We examine the off-equilibrium Langevin dynamics of this model and study the relaxation of the density as well as the correlation, response and overlap two-time functions. We find that the relaxation proceeds in two steps as well as absence of anomaly in the response function. By studying the violation of the fluctuation-dissipation ratio we conclude that the glassy scenario of this model corresponds to the dynamics of domain growth in phase ordering kinetics.Comment: 21 pages, RevTeX, 14 PS figure

    Charged Particles in a 2+1 Curved Background

    Full text link
    The coupling to a 2+1 background geometry of a quantized charged test particle in a strong magnetic field is analyzed. Canonical operators adapting to the fast and slow freedoms produce a natural expansion in the inverse square root of the magnetic field strength. The fast freedom is solved to the second order. At any given time, space is parameterized by a couple of conjugate operators and effectively behaves as the `phase space' of the slow freedom. The slow Hamiltonian depends on the magnetic field norm, its covariant derivatives, the scalar curvature and presents a peculiar coupling with the spin-connection.Comment: 22 page

    Mildred Dresselhaus and Solid State Pedagogy at MIT

    Get PDF
    Mildred Dresselhaus is known for her influential research on the physics of carbon. Her wide‐ranging influence as a physics teacher, although well‐known to her students, has been less thoroughly examined. Exploring how Dresselhaus grew into her role teaching solid state physics at MIT reveals much about how that subfield evolved

    The Higgs intense--coupling regime in constrained SUSY models and its astrophysical implications

    Full text link
    We analyze the Higgs intense--coupling regime, in which all Higgs particles of the Minimal Supersymmetric Standard Model are light with masses of the same order and the value of \tb the ratio of vacuum expectation values of the two Higgs fields is large, in the framework of Supergravity scenarios with non--universal soft Supersymmetry breaking scalar masses in the Higgs sector. In particular, we calculate the relic density abundance of the lightest neutralino candidate for cold dark matter and the rates in direct and indirect detection at present and future experiments. We first show that while in the mSUGRA model this regime is disfavored by present data, there are regions in the parameter space of models with non--universal Higgs masses where it can occur. We then show that because of the large value of tan⁥ÎČ\tan\beta and the relatively low values of the neutral Higgs boson masses, the cross section for neutralino--nucleon scattering is strongly enhanced in this regime and would allow for the observation of a signal in direct detection experiments such as CDMS--Soudan. The expected sensitivity of gamma--ray detectors like GLAST might be also sufficient to observe the annihilation of neutralinos in such a regime.Comment: 19 pages, 5 figure

    Vortices in Ginzburg-Landau billiards

    Full text link
    We present an analysis of the Ginzburg-Landau equations for the description of a two-dimensional superconductor in a bounded domain. Using the properties of a special integrability point of these equations which allows vortex solutions, we obtain a closed expression for the energy of the superconductor. The role of the boundary of the system is to provide a selection mechanism for the number of vortices. A geometrical interpretation of these results is presented and they are applied to the analysis of the magnetization recently measured on small superconducting disks. Problems related to the interaction and nucleation of vortices are discussed.Comment: RevTex, 17 pages, 3 eps figure

    Indirect Searches for Zâ€ČZ'-like Resonances at the LHC

    Full text link
    We explore the possibility of indirectly observing the effects of Zâ€ČZ'-like particles with electroweak strength couplings in the Drell-Yan channel at the LHC with masses above the resonance direct search reach. We find that, mostly due to statistical limitations, this is very unlikely in almost all classes of models independently of the spin of the resonance. Not unexpectedly, the one possible exception to this general result is the case of degenerate Kaluza-Klein (KK) excitations of the photon and ZZ that occur in some extra-dimensional models. In this special case, the strong destructive interference with the Standard Model (SM) exchanges below the resonance mass leads to a well-known significant suppression of the cross section and thus increased sensitivity to this particular new physics scenario.Comment: 18 pages, 6 figs, discussion and reference adde

    Gluon mass generation in the PT-BFM scheme

    Get PDF
    In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search of infrared finite solutions, paying particular attention to the role of the seagull graph in enforcing transversality, the necessity of introducing massless poles in the three-gluon vertex, and the incorporation of the correct renormalization group properties. In addition, we present a method for regulating the seagull-type contributions based on dimensional regularization; its applicability depends crucially on the asymptotic behavior of the solutions in the deep ultraviolet, and in particular on the anomalous dimension of the dynamically generated gluon mass. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles belonging to different Lorentz structures. The resulting integral equation is then solved numerically, the infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is determined. Various open questions and possible connections with different approaches in the literature are discussed.Comment: 54 pages, 24 figure

    Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB

    Full text link
    Supersymmetric models based on anomaly-mediated SUSY breaking (AMSB) generally give rise to a neutral wino as a WIMP cold dark matter (CDM) candidate, whose thermal abundance is well below measured values. Here, we investigate four scenarios to reconcile AMSB dark matter with the measured abundance: 1. non-thermal wino production due to decays of scalar fields ({\it e.g} moduli), 2. non-thermal wino production due to decays of gravitinos, 3. non-thermal wino production due to heavy axino decays, and 4. the case of an axino LSP, where the bulk of CDM is made up of axions and thermally produced axinos. In cases 1 and 2, we expect wino CDM to constitute the entire measured DM abundance, and we investigate wino-like WIMP direct and indirect detection rates. Wino direct detection rates can be large, and more importantly, are bounded from below, so that ton-scale noble liquid detectors should access all of parameter space for m_{\tz_1}\alt 500 GeV. Indirect wino detection rates via neutrino telescopes and space-based cosmic ray detectors can also be large. In case 3, the DM would consist of an axion plus wino admixture, whose exact proportions are very model dependent. In this case, it is possible that both an axion and a wino-like WIMP could be detected experimentally. In case 4., we calculate the re-heat temperature of the universe after inflation. In this case, no direct or indirect WIMP signals should be seen, although direct detection of relic axions may be possible. For each DM scenario, we show results for the minimal AMSB model, as well as for the hypercharged and gaugino AMSB models.Comment: 29 pages including 13 figure
    • 

    corecore