16 research outputs found

    BRAHMS Overview

    Full text link
    A brief review of BRAHMS measurements of bulk particle production in RHIC Au+Au collisions at sNN=200GeV\sqrt{s_{NN}}=200GeV is presented, together with some discussion of baryon number transport. Intermediate pTp_{T} measurements in different collision systems (Au+Au, d+Au and p+p) are also discussed in the context of jet quenching and saturation of the gluon density in Au ions at RHIC energies. This report also includes preliminary results for identified particles at forward rapidities in d+Au and Au+Au collisions.Comment: 8 pages 6 figures, Invited plenary talk at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 2005), Salt Lake City, Kolkata, India, 8-12 Feb 200

    Centrality and sNNDependenceofthe\sqrt{s_{NN}} Dependence of the dE_{T}/d\etaand and dN_{ch}/d\eta$ in Heavy Ion Collisions at Mid-Rapidity

    Full text link
    The PHENIX experiment at RHIC has measured transverse energy and charged particle multiplicity at mid-rapidity in Au + Au collisions at sNN\sqrt{s_{NN}} = 19.6, 130, 62.4 and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments, and experiments at lower energies. The sNN\sqrt{s_{NN}} dependence of dET/dηdE_{T}/d\eta and dNch/dηdN_{ch}/d\eta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dET/dηdE_{T}/d\eta and dNch/dηdN_{ch}/d\eta is similar at all measured incident energies. At RHIC energies the ratio of transverse energy per charged particle was found independent of centrality and growing slowly with sNN\sqrt{s_{NN}}. A survey of comparisons between the data and available theoretical models is also presented.Comment: Proccedings of the Workshop: Focus on Multiplcity at Bari, Italy, June 17-19,2004. To be submitted to the Jornal of Physics, "Conference series". Includes: 20 Pages, 15 figures, 3 Tables, 80 Referencie

    Suppression of High Transverse Momentum π0\pi^0 Spectra in Au+Au Collisions at RHIC

    Full text link
    Au+Au, s1/2=200s^{1/2} = 200 A GeV measurements at RHIC, obtained with the PHENIX, STAR, PHOBOS and BRAHMS detectors, have all indicated a suppression of neutral pion production, relative to an appropriately normalized NN level. For central collisions and vanishing pseudo-rapidity these experiments exhibit suppression in charged meson production, especially at medium to large transverse momenta. In the PHENIX experiment similar behavior has been reported for π0\pi^0 spectra. In a recent work on the simpler D+Au interaction, to be considered perhaps as a tune-up for Au+Au, we reported on a pre-hadronic cascade mechanism which explains the mixed observation of moderately reduced p⊥p_\perp suppression at higher pseudo-rapidity as well as the Cronin enhancement at mid-rapidity. Here we present the extension of this work to the more massive ion-ion collisions. Our major thesis is that much of the suppression is generated in a late stage cascade of colourless pre-hadrons produced after an initial short-lived coloured phase. We present a pQCD argument to justify this approach and to estimate the time duration τp\tau_p of this initial phase. Of essential importance is the brevity in time of the coloured phase existence relative to that of the strongly interacting pre-hadron phase. The split into two phases is of course not sharp in time, but adequate for treating the suppression of moderate and high p⊥p_\perp mesons.Comment: 19 pages, 10 figure

    Elliptical Flow in Relativistic Ion Collisions at s^(1/2)= 200 A GeV

    Full text link
    A consistent picture of the Au+Au and D+Au, s^1/2 = 200 A GeV measurements at RHIC obtained with the PHENIX, STAR, PHOBOS and BRAHMS detectors including both the rapidity and transverse momentum spectra was previously developed with the simulation LUCIFER. The approach was modeled on the early production of a fluid of pre-hadrons after the completion of an initial, phase of high energy interactions. The formation of pre-hadrons is discussed here, in a perturbative QCD approach as advocated by Kopeliovich, Nemchik and Schmidt. In the second phase of LUCIFER, a considerably lower energy hadron-like cascade ensues. Since the dominant collisions occurring in this latter phase are meson-meson in character while the initial collisions are between baryons, i.e. both involve hadron sized interaction cross-sections, there is good reason to suspect that the observed elliptical flow will be produced naturally, and this is indeed found to be the case.Comment: 7 pages, 6 figure

    Jet Tomography in the Forward Direction at RHIC

    Get PDF
    Hadron production at high-pTp_T displays a strong suppression pattern in a wide rapidity region in heavy ion collisions at RHIC energies. This finding indicates the presence of strong final state effects for both transversally and longitudinally traveling partons, namely induced energy loss. We have developed a perturbative QCD based model to describe hadron production in pppp collision, which can be combined with the Glauber -- Gribov model to describe hadron production in heavy ion collisions. Investigating AuAuAuAu and CuCuCuCu collisions at energy s=200\sqrt{s}=200 AAGeV at mid-rapidity, we find the opacity of the strongly interacting hot matter to be proportional to the participant nucleon number. Considering forward rapidities, the suppression pattern indicates the formation of a longitudinally contracted dense deconfined zone in central heavy ion collisions. We determine parameters for the initial geometry from the existing data.Comment: 6 pages for Hot Quarks '06 Conferenc
    corecore