29 research outputs found

    The Art of Self-Control – Autoregulation of Plant–Microbe Symbioses

    Get PDF
    Plants interact with diverse microbes including those that result in nutrient-acquiring symbioses. In order to balance the energy cost with the benefit gained, plants employ a systemic negative feedback loop to control the formation of these symbioses. This is particularly well-understood in nodulation, the symbiosis between legumes and nitrogen-fixing rhizobia, and is known as autoregulation of nodulation (AON). However, much less is understood about the autoregulation of the ancient arbuscular mycorrhizal symbioses that form between Glomeromycota fungi and the majority of land plants. Elegant physiological studies in legumes have indicated there is at least some overlap in the genes and signals that regulate these two symbioses but there are major gaps in our understanding. In this paper we examine the hypothesis that the autoregulation of mycorrhizae (AOM) pathway shares some elements with AON but that there are also some important differences. By reviewing the current knowledge of the AON pathway, we have identified important directions for future AOM studies. We also provide the first genetic evidence that CLV2 (an important element of the AON pathway) influences mycorrhizal development in a non-legume, tomato and review the interaction of the autoregulation pathway with plant hormones and nutrient status. Finally, we discuss whether autoregulation may play a role in the relationships plants form with other microbes

    The Impact of Dormancy Breakers on Hormone Profiles, Fruit Growth and Quality in Sweet Cherry

    Get PDF
    Chemical dormancy breakers are often used to manipulate floral bud break in sweet cherry production, and their use is increasing due to unpredictable climate effects. The role of plant hormones in regulating the critical transition of floral buds from dormant to opening in deciduous trees is now emerging. By monitoring changes in endogenous hormone levels within floral buds that are undergoing the transition from dormant to the growing state in response to various cues (environmental and/or chemical inducers), we can begin to distinguish the plant hormones that are the drivers of this process. This study sought to identify key hormonal regulators of floral bud break using sweet cherry as a model and modifying timing of bud break through the application of two chemical dormancy breakers, hydrogen cyanamide (HC, Dormex®) and emulsified vegetable oil compound (EVOC, Waiken®), and to determine the effect of these chemicals on fruit growth and quality. Treatments were applied at label rates 35–40 days before estimated bud break. We found that HC-treated tree buds broke earlier, and this was associated with a significant early elevation of the cytokinins dihydrozeatin and dihydrozeatin riboside compared to the control and EVOC-treated tree buds. In contrast, changes in auxin and abscisic acid content did not appear to explain the hastened bud burst induced by hydrogen cyanamide. While HC-treated trees resulted in larger fruit, there was a higher incidence of cracked fruit and the pack-out of A-grade fruit was reduced. The increase in fruit size was attributed to the earlier flowering and hence longer growing period. Harvest assessment of fruit quality showed no treatment effect on most quality parameters, including fruit dry matter content, total soluble solids or malic acid content, but a reduction in fruit compression firmness and stem pull force in EVOC-treated trees was observed. However, all fruit still met the Australian industry fruit quality export market standards. This study offers important insights into bud hormonal activities underpinning the action of these chemical regulators; understanding bud responses is critically important to ensuring consistent and sustainable fruit tree production systems into the future. It also demonstrates that the dormancy-breaking agents HC and EVOC have no detrimental impact on fruit quality at harvest or following storage, however growers need to be aware of the potential for increased fruit cracking when earlier bud break results in a longer growing season which has the potential to increase fruit size. Further studies are required to determine the role of gibberellin in hastening bud break by dormancy breaker

    The DELLA Proteins Influence the Expression of Cytokinin Biosynthesis and Response Genes During Nodulation

    Get PDF
    The key event that initiates nodule organogenesis is the perception of bacterial signal molecules, the Nod factors, triggering a complex of responses in epidermal and cortical cells of the root. The Nod factor signaling pathway interacts with plant hormones, including cytokinins and gibberellins. Activation of cytokinin signaling through the homeodomain-containing transcription factors KNOX is essential for nodule formation. The main regulators of gibberellin signaling, the DELLA proteins are also involved in regulation of nodule formation. However, the interaction between the cytokinin and gibberellin signaling pathways is not fully understood. Here, we show in Pisum sativum L. that the DELLA proteins can activate the expression of KNOX and BELL transcription factors involved in regulation of cytokinin metabolic and response genes. Consistently, pea la cry-s (della1 della2) mutant showed reduced ability to upregulate expression of some cytokinin metabolic genes during nodulation. Our results suggest that DELLA proteins may regulate cytokinin metabolism upon nodulation

    Rht18 semidwarfism in wheat is due to increased GA 2-oxidaseA9 expression and reduced GA content

    Get PDF
    Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b. In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these "overgrowth"mutants showed that they contained independent mutations in the coding region of GA2oxA9. GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110. Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9

    Genetic control of branching in pea.

    No full text

    Common and divergent roles of plant hormones in nodulation and arbuscular mycorrhizal symbioses

    No full text
    All of the classical plant hormones have been suggested to influence nodulation, including some that interact with the Autoregulation of Nodulation (AON) pathway. Leguminous plants strictly regulate the number of nodules formed through this AON pathway via a root-shoot-root loop that acts to suppress excessive nodulation. A related pathway, the Autoregulation of Mycorrhization (AOM) pathway controls the more ancient, arbuscular mycorrhizal (AM) symbiosis. A comparison of the published responses to the classical hormones in these 2 symbioses shows that most influence the symbioses in the same direction. This may be expected if they affect the symbioses via common components of these symbiotic regulatory pathways. However, some hormones influence these symbioses in opposite directions, suggesting a more complex relationship, and probably one that is not via the common components of these pathways. In a recent paper we showed, using a genetic approach, that strigolactones and brassinosteroids do not act downstream of the AON genes examined and argued that they probably act independently to promote nodule formation. Recently it has been shown that the control of nodulation via the AON pathway involves mobile CLE peptide signals. It is therefore suggested that a more direct avenue to determine if the classical hormones play a direct role in the autoregulatory pathways is to further examine whether CLE peptides and other components of these processes can influence, or be influenced by, the classical hormones. Such studies and other comparisons between the nodulation and mycorrhizal symbioses should allow the role of the classical hormones in these critical symbioses to be rapidly advanced

    Relationship between gibberellin, ethylene and nodulation in Pisum sativum

    No full text
    P>Gibberellin (GA) deficiency resulting from the na mutation in pea (Pisum sativum) causes a reduction in nodulation. Nodules that do form are aberrant, having poorly developed meristems and a lack of enlarged cells. Studies using additional GA-biosynthesis double mutants indicate that this results from severe GA deficiency of the roots rather than simply dwarf shoot stature
    corecore