12 research outputs found

    Radionuclide imaging of bone marrow disorders

    Get PDF
    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed

    Neutrophil extracellular traps as an adhesion substrate for different tumor cells expressing RGD-binding integrins.

    No full text
    Neutrophil extracellular traps (NETs), in addition to their function as a host defense mechanism, play a relevant role in thrombus formation and metastatic dissemination of cancer cells. Here we screened different cancer cell lines endogenously expressing a variety of integrins for their ability to bind to NETs. To this end, we used NETs isolated from neutrophil-like cells as a substrate for adhesion assays of HT1080, U-87 MG, H1975, DU 145, PC-3 and A-431 cells. Levels of α5, αIIb, αv, β1, β3 and β5 chains were determined by western blot analysis in all cell lines and levels of whole integrins on the plasma membrane were assessed by fluorescence-activated cell sorting (FACS) analysis. We found that high levels of α5β1, αvβ3 and αvβ5 enhance cell adhesion to NETs, whereas low expression of α5β1 prevents cell attachment to NETs. Excess of cyclic RGD peptide inhibited cell adhesion to NETs by competing with fibronectin within NETs. The maximal reduction of such adhesion was similar to that obtained by DNase 1 treatment causing DNA degradation. Our findings indicate that NETs from neutrophil-like cells may be used as a substrate for large screening of the adhesion properties of cancer cells expressing a variety of RGD-binding integrins
    corecore