1,823 research outputs found
Mechanism and substrate specificity of the flavin reductase ActVB from Streptomyces coelicolor.
International audienceActVB is the NADH:flavin oxidoreductase participating in the last step of actinorhodin synthesis in Streptomyces coelicolor. It is the prototype of a whole class of flavin reductases with both sequence and functional similarities. The mechanism of reduction of free flavins by ActVB has been studied. Although ActVB was isolated with FMN bound, we have demonstrated that it is not a flavoprotein. Instead, ActVB contains only one flavin binding site, suitable for the flavin reductase activity and with a high affinity for FMN. In addition, ActVB proceeds by an ordered sequential mechanism, where NADH is the first substrate. Whereas ActVB is highly specific for NADH, it is able to catalyze the reduction of a great variety of natural and synthetic flavins, but with K(m) values ranging from 1 microm (FMN) to 69 microm (lumiflavin). We show that both the ribitol-phosphate chain and the isoalloxazine ring contribute to the protein-flavin interaction. Such properties are unique and set the ActVB family apart from the well characterized Fre flavin reductase family
Discovery of superoxide reductase: an historical perspective.
International audienceFor more than 30 years, the only enzymatic system known to catalyze the elimination of superoxide was superoxide dismutase, SOD. SOD has been found in almost all organisms living in the presence of oxygen, including some anaerobic bacteria, supporting the notion that superoxide is a key and general component of oxidative stress. Recently, a new concept in the field of the mechanisms of cellular defense against superoxide has emerged. It was discovered that elimination of superoxide in some anaerobic and microaerophilic bacteria could occur by reduction, a reaction catalyzed by a small metalloenzyme thus named superoxide reductase, SOR. Having played a major role in this discovery, we describe here how the concept of superoxide reduction emerged and how it was experimentally substantiated independently in our laboratory
Reaction of the desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity.
International audienceDesulfoferrodoxin is a small protein found in sulfate-reducing bacteria that contains two independent mononuclear iron centers, one ferric and one ferrous. Expression of desulfoferrodoxin from Desulfoarculus baarsii has been reported to functionally complement a superoxide dismutase deficient Escherichia coli strain. To elucidate by which mechanism desulfoferrodoxin could substitute for superoxide dismutase in E. coli, we have purified the recombinant protein and studied its reactivity toward O-(2). Desulfoferrodoxin exhibited only a weak superoxide dismutase activity (20 units mg(-1)) that could hardly account for its antioxidant properties. UV-visible and electron paramagnetic resonance spectroscopy studies revealed that the ferrous center of desulfoferrodoxin could specifically and efficiently reduce O-(2), with a rate constant of 6-7 x 10(8) M(-1) s(-1). In addition, we showed that membrane and cytoplasmic E. coli protein extracts, using NADH and NADPH as electron donors, could reduce the O-(2) oxidized form of desulfoferrodoxin. Taken together, these results strongly suggest that desulfoferrodoxin behaves as a superoxide reductase enzyme and thus provide new insights into the biological mechanisms designed for protection from oxidative stresses
A two-component flavin-dependent monooxygenase involved in actinorhodin biosynthesis in Streptomyces coelicolor.
International audienceThe two-component flavin-dependent monooxygenases belong to an emerging class of enzymes involved in oxidation reactions in a number of metabolic and biosynthetic pathways in microorganisms. One component is a NAD(P)H:flavin oxidoreductase, which provides a reduced flavin to the second component, the proper monooxygenase. There, the reduced flavin activates molecular oxygen for substrate oxidation. Here, we study the flavin reductase ActVB and ActVA-ORF5 gene product, both reported to be involved in the last step of biosynthesis of the natural antibiotic actinorhodin in Streptomyces coelicolor. For the first time we show that ActVA-ORF5 is a FMN-dependent monooxygenase that together with the help of the flavin reductase ActVB catalyzes the oxidation reaction. The mechanism of the transfer of reduced FMN between ActVB and ActVA-ORF5 has been investigated. Dissociation constant values for oxidized and reduced flavin (FMNox and FMNred) with regard to ActVB and ActVA-ORF5 have been determined. The data clearly demonstrate a thermodynamic transfer of FMNred from ActVB to ActVA-ORF5 without involving a particular interaction between the two protein components. In full agreement with these data, we propose a reaction mechanism in which FMNox binds to ActVB, where it is reduced, and the resulting FMNred moves to ActVA-ORF5, where it reacts with O2 to generate a flavinperoxide intermediate. A direct spectroscopic evidence for the formation of such species within ActVA-ORF5 is reported
Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
International audienceFlavin reductase catalyzes the reduction of free flavins by NAD(P)H. As isolated, Escherichia coli flavin reductase does not contain any flavin prosthetic group but accommodates both the reduced pyridine nucleotide and the flavin substrate in a ternary complex prior to oxidoreduction. The reduction of riboflavin by NADPH catalyzed by flavin reductase has been studied by static and rapid kinetics absorption spectroscopies. Static absorption spectroscopy experiments revealed that, in the presence of riboflavin and reduced pyridine nucleotide, flavin reductase stabilizes, although to a small extent, a charge-transfer complex of NADP+ and reduced riboflavin. In addition, reduction of riboflavin was found to be essentially irreversible. Rapid kinetics absorption spectroscopy studies demonstrated the occurrence of two intermediates with long-wavelength absorption during the catalytic cycle. Such intermediate species exhibit spectroscopic properties similar to those of charge-transfer complexes of oxidized flavin and NAD(P)H, and reduced flavin and NAD(P)+, respectively, which have been identified as intermediates during the reaction of flavoenzymes of the ferredoxin-NADP+ reductase family. Thus, a minimal kinetic scheme for the reaction of flavin reductase with NADPH and riboflavin can be proposed. After formation of the Michaelis complex of flavin reductase with NADPH and riboflavin, a first intermediate, identified as a charge-transfer complex of NADPH and riboflavin, is formed. It is followed by a second charge-transfer intermediate of enzyme-bound NADP+ and reduced riboflavin. The latter decays, yielding the Michaelis complex of flavin reductase with NADP+ and reduced riboflavin, which then dissociates to complete the reaction. These results support the initial hypothesis of a structural similarity between flavin reductase and the enzymes of the ferredoxin-NADP+ reductase family and extend it at a functional level
- …
