9 research outputs found

    Prospective associations between a priori dietary patterns adherence and kidney function in an elderly Mediterranean population at high cardiovascular risk.

    Get PDF
    PURPOSE: To assess the association between three different a priori dietary patterns adherence (17-item energy reduced-Mediterranean Diet (MedDiet), Trichopoulou-MedDiet and Dietary Approach to Stop Hypertension (DASH)), as well as the Protein Diet Score and kidney function decline after one year of follow-up in elderly individuals with overweight/obesity and metabolic syndrome (MetS). METHODS: We prospectively analyzed 5675 participants (55-75 years) from the PREDIMED-Plus study. At baseline and at one year, we evaluated the creatinine-based estimated glomerular filtration rate (eGFR) and food-frequency questionnaires-derived dietary scores. Associations between four categories (decrease/maintenance and tertiles of increase) of each dietary pattern and changes in eGFR (ml/min/1.73m2) or ≄ 10% eGFR decline were assessed by fitting multivariable linear or logistic regression models, as appropriate. RESULTS: Participants in the highest tertile of increase in 17-item erMedDiet Score showed higher upward changes in eGFR (ÎČ: 1.87 ml/min/1.73m2; 95% CI: 1.00-2.73) and had lower odds of ≄ 10% eGFR decline (OR: 0.62; 95% CI: 0.47-0.82) compared to individuals in the decrease/maintenance category, while Trichopoulou-MedDiet and DASH Scores were not associated with any renal outcomes. Those in the highest tertile of increase in Protein Diet Score had greater downward changes in eGFR (ÎČ: - 0.87 ml/min/1.73m2; 95% CI: - 1.73 to - 0.01) and 32% higher odds of eGFR decline (OR: 1.32; 95% CI: 1.00-1.75). CONCLUSIONS: Among elderly individuals with overweight/obesity and MetS, only higher upward change in the 17-item erMedDiet score adherence was associated with better kidney function after one year. However, increasing Protein Diet Score appeared to have an adverse impact on kidney health. TRIAL REGISTRATION NUMBER: ISRCTN89898870 (Data of registration: 2014)

    Molecular architecture and function of the hemidesmosome

    Get PDF

    Molecular architecture and function of the hemidesmosome

    Get PDF

    Activation of neutrophils by autocrine IL-17A–IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2

    No full text
    Here we identified a population of bone marrow neutrophils that constitutively expressed the transcription factor RORÎłt and produced and responded to interleukin 17A (IL-17A (IL-17)). IL-6, IL-23 and RORÎłt, but not T cells or natural killer (NK) cells, were required for IL-17 production in neutrophils. IL-6 and IL-23 induced expression of the receptors IL-17RC and dectin-2 on neutrophils, and IL-17RC expression was augmented by activation of dectin-2. Autocrine activity of IL-17A and its receptor induced the production of reactive oxygen species (ROS), and increased fungal killing in vitro and in a model of Aspergillus-induced keratitis. Human neutrophils also expressed RORÎłt and induced the expression of IL-17A, IL-17RC and dectin-2 following stimulation with IL-6 and IL-23. Our findings identify a population of human and mouse neutrophils with autocrine IL-17 activity that probably contribute to the etiology of microbial and inflammatory diseases

    Identification and characterization of DSPIa, a novel isoform of human desmoplakin

    Get PDF
    Desmoplakin is a ubiquitous component of desmosomes and desmosome-like structures, such as the cardiomyocyte area composita. Two major isoforms, desmoplakin I (DSPI) and desmoplakin II (DSPII) are encoded by alternative mRNA transcripts differentially spliced from the same gene. The resulting proteins are identical in amino acid sequence with the exception that DSPII contains only one third of the central alpha-helical rod domain present in DSPI. Here we describe a novel minor isoform of desmoplakin that is also produced by alternative splicing of the desmoplakin gene and that we name desmoplakin Ia (DSPIa). DSPIa is an alternatively spliced DSPI mRNA with a unique splice donor site that is 90% homologous to and downstream of the DSPII specific donor. The resulting DSPIa mRNA is in-frame and encodes a protein that has a central alpha-helical rod domain of intermediate size and that is 156 amino acids larger than DSPII and 443 amino acids smaller than DSPI. We demonstrate, through recombinant expression and short interfering RNA knockdown, that the DSPIa protein is readily detectable, albeit at substantially lower levels than the dominant isoforms, DSPI and DSPII. DSPIa mRNA has a similar tissue distribution to that of DSPI and of DSPII

    Inherited desmosomal disorders

    No full text
    corecore