2,885 research outputs found

    Superfluid to Bose-glass transition in a 1D weakly interacting Bose gas

    Get PDF
    We study the one-dimensional Bose gas in spatially correlated disorder at zero temperature, using an extended density-phase Bogoliubov method. We analyze in particular the decay of the one-body density matrix and the behaviour of the Bogoliubov excitations across the phase boundary. We observe that the transition to the Bose glass phase is marked by a power-law divergence of the density of states at low energy. A measure of the localization length displays a power-law energy dependence in both regions, with the exponent equal to -1 at the boundary. We draw the phase diagram of the superfluid-insulator transition in the limit of small interaction strength.Comment: 4 pages, 4 figure

    Mean-field phase diagram of the 1-D Bose gas in a disorder potential

    Get PDF
    We study the quantum phase transition of the 1D weakly interacting Bose gas in the presence of disorder. We characterize the phase transition as a function of disorder and interaction strengths, by inspecting the long-range behavior of the one-body density matrix as well as the drop in the superfluid fraction. We focus on the properties of the low-energy Bogoliubov excitations that drive the phase transition, and find that the transition to the insulator state is marked by a diverging density of states and a localization length that diverges as a power-law with power 1. We draw the phase diagram and we observe that the boundary between the superfluid and the Bose glass phase is characterized by two different algebraic relations. These can be explained analytically by considering the limiting cases of zero and infinite disorder correlation length.Comment: 10 pages, 10 figure

    Knock: A Century of Research

    Get PDF
    Knock is one of the main limitations on increasing spark-ignition (SI) engine efficiency. This has been known for at least 100 years, and it is still the case today. Knock occurs when conditions ahead of the flame front in an SI engine result in one or more autoignition events in the end gas. The autoignition reaction rate is typically much higher than that of the flame-front propagation. This may lead to the creation of pressure waves in the combustion chamber and, hence, an undesirable noise that gives knock its name. The resulting increased mechanical and thermal loading on engine components may eventually lead to engine failure. Reducing the compression ratio lowers end-gas temperatures and pressures, reducing end-gas reactivity and, hence, mitigating knock. However, this has a detrimental effect on engine efficiency. Automotive companies must significantly reduce their fleet carbon dioxide (CO2) values in the coming years to meet targets resulting from the 2015 Paris Agreement. One path towards meeting these is through partial or full electrification of the powertrain. However, the vast majority of automobiles in the near future will still feature a gasoline-fueled SI engine; hence, improvements in combustion engine efficiency remain fundamental. As knock has been a key limitation for so long, there is a huge amount of literature on the subject. A number of reviews on knock have already been published, including in recent years. These generally concentrate on current understanding and status. The present work, in contrast, aims to track the progress of research on knock from the 1920s right through to the present day. It is hoped that this can be a useful reference for new and existing researchers of the subject and give further weight to occasionally neglected historical activity, which can still provide important insights today

    Three-Dimensional CFD Simulation of a Proton Exchange Membrane Electrolysis Cell

    Get PDF
    The energy shift towards carbon-free solutions is creating an ever-growing engineering interest in electrolytic cells, i.e., devices to produce hydrogen from water-splitting reactions. Among the available technologies, Proton Exchange Membrane (PEM) electrolysis is the most promising candidate for coping with the intermittency of renewable energy sources, thanks to the short transient period granted by the solid thin electrolyte. The well-known principle of PEM electrolysers is still unsupported by advanced engineering practices, such as the use of multidimensional simulations able to elucidate the interacting fluid dynamics, electrochemistry, and heat transport. A methodology for PEM electrolysis simulation is therefore needed. In this study, a model for the multidimensional simulation of PEM electrolysers is presented and validated against a recent literature case. The study analyses the impact of temperature and gas phase distribution on the cell performance, providing valuable insights into the understanding of the physical phenomena occurring inside the cell at the basis of the formation rate of hydrogen and oxygen. The simulations regard two temperature levels (333 K and 353 K) and the complete polarization curve is numerically predicted, allowing the analysis of the overpotentials break-up and the multi-phase flow in the PEM cell. An in-house developed model for macro-homogeneous catalyst layers is applied to PEM electrolysis, allowing independent analysis of overpotentials, investigation into their dependency on temperature and analysis of the cathodic gas–liquid stratification. The study validates a comprehensive multi-dimensional model for PEM electrolysis, relevantly proposing a methodology for the ever-growing urgency for engineering optimization of such devices

    A Preliminary 1D-3D Analysis of the Darmstadt Research Engine under Motored Condition

    Get PDF
    In the present paper, 1D and 3D CFD models of the Darmstadt research engine undergo a preliminary validation against the available experimental dataset at motored condition. The Darmstadt engine is a single-cylinder optical research unit and the chosen operating point is characterized by a revving speed equal to 800 rpm with intake temperature and pressure of 24 \ub0C and 0.95 bar, respectively. Experimental data are available from the TU Darmstadt engine research group. Several aspects of the engine are analyzed, such as crevice modeling, blow-by, heat transfer and compression ratio, with the aim to minimize numerical uncertainties. On the one hand, a GT-Power model of the engine is used to investigate the impact of blow-by and crevices modeling during compression and expansion strokes. Moreover, it provides boundary conditions for the following 3D CFD simulations. On the other hand, the latter, carried out in a RANS framework with both highand low-Reynolds wall treatments, allow a deeper investigation of the boundary layer phenomena and, thus, of the gas-to-wall heat transfer. A detailed modeling of the crevice, along with an ad hoc tuning of both blow-by and heat fluxes lead to a remarkable improvement of the results. However, in order to adequately match the experimental mean in-cylinder pressure, a slight modification of the compression ratio from the nominal value is accounted for, based on the uncertainty which usually characterizes such geometrical parameter. The present preliminary study aims at providing reliable numerical setups for 1D and 3D models to be adopted in future detailed investigations on the Darmstadt research engine

    A multisite study of performance drivers among institutional review boards.

    Get PDF
    Introduction:The time required to obtain Institutional Review Board (IRB) approval is a frequent subject of efforts to reduce unnecessary delays in initiating clinical trials. This study was conducted by and for IRB directors to better understand factors affecting approval times as a first step in developing a quality improvement framework. Methods:807 IRB-approved clinical trials from 5 University of California campuses were analyzed to identify operational and clinical trial characteristics influencing IRB approval times. Results:High workloads, low staff ratios, limited training, and the number and types of ancillary reviews resulted in longer approval times. Biosafety reviews and the need for billing coverage analysis were ancillary reviews that contributed to the longest delays. Federally funded and multisite clinical trials had shorter approval times. Variability in between individual committees at each institution reviewing phase 3 multisite clinical trials also contributed to delays for some protocols. Accreditation was not associated with shorter approval times. Conclusions:Reducing unnecessary delays in obtaining IRB approval will require a quality improvement framework that considers operational and study characteristics as well as the larger institutional regulatory environment

    Coat colours in the Massese sheep breed are associated with mutations in the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes

    Get PDF
    Massese is an Italian dairy sheep breed characterized by animals with black skin and horns and black or apparent grey hairs. Owing to the presence of these two coat colour types, this breed can be considered an interesting model to evaluate the effects of coat colour gene polymorphisms on this phenotypic trait. Two main loci have been already shown to affect coat colour in sheep: Agouti and Extension coding for the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes, respectively. The Agouti locus is affected by a large duplication including the ASIP gene that may determine the Agouti white and tan allele (AWt). Other disrupting or partially inactivating mutations have been identified in exon 2 (a deletion of 5 bp, D5; and a deletion of 9 bp, D9) and in exon 4 (g.5172T.A, p.C126S) of the ASIP gene. Three missense mutations in the sheep MC1R gene cause the dominant black ED allele (p.M73K and p.D121N) and the putative recessive e allele (p.R67C). Here, we analysed these ASIP and MC1R mutations in 161 Massese sheep collected from four flocks. The presence of one duplicated copy allele including the ASIP gene was associated with grey coat colour (P59.4E-30). Almost all animals with a duplicated copy allele (37 out of 41) showed uniform apparent grey hair and almost all animals without a duplicated allele (117 out of 120) were completely black. Different forms of duplicated alleles were identified in Massese sheep including, in almost all cases, copies with exon 2 disrupting or partially inactivating mutations making these alleles different from the AWt allele. A few exceptions were observed in the association between ASIP polymorphisms and coat colour: three grey sheep did not carry any duplicated copy allele and four black animals carried a duplicated copy allele. Of the latter four sheep, two carried the ED allele of the MC1R gene that may be the cause of their black coat colour. The coat colour of all other black animals may be determined by non-functional ASIP alleles (non-agouti alleles, Aa) and in a few cases by the ED Extension allele. At least three frequent ASIP haplotypes ([D5:g.5172T], [N:g.5172A] and [D5:g.5172A]) were detected (organized into six different diplotypes). In conclusion, the results indicated that coat colours in the Massese sheep breed are mainly derived by combining ASIP and MC1R mutations

    Mining livestock genome datasets for an unconventional characterization of animal DNA viromes

    Get PDF
    Whole genome sequencing (WGS) datasets, usually generated for the investigation of the individual animal genome, can be used for additional mining of the fraction of sequencing reads that remains unmapped to the respective reference genome. A significant proportion of these reads contains viral DNA derived from viruses that infected the sequenced animals. In this study, we mined more than 480 billion sequencing reads derived from 1471 WGS datasets produced from cattle, pigs, chickens and rabbits. We identified 367 different viruses among which 14, 11, 12 and 1 might specifically infect the cattle, pig, chicken and rabbit, respectively. Some of them are ubiquitous, avirulent, highly or potentially damaging for both livestock and humans. Retrieved viral DNA information provided a first unconventional and opportunistic landscape of the livestock viromes that could be useful to understand the distribution of some viruses with potential deleterious impacts on the animal food production systems
    • …
    corecore