2 research outputs found

    Deprotometalation-iodolysis and computed CH acidity of 1,2,3- and 1,2,4-triazoles. Application to the synthesis of resveratrol analogues

    No full text
    International audience1-Aryl- and 2-aryl-1,2,3-triazoles were synthesized by N-arylation of the corresponding azoles using aryl iodides. The deprotometalations of 1-phenyl-1,2,3-triazole and -1,2,4-triazole were performed using a 2,2,6,6-tetramethylpiperidino-based mixed lithium-zinc combination and occurred at the most acidic site, affording by iodolysis the 5-substituted derivatives. Dideprotonation was noted from 1-(2-thienyl)-1,2,4-triazole by increasing the amount of base. From 2-phenyl-1,2,3-triazoles, and in particular from 2-(4-trifluoromethoxy)phenyl-1,2,3-triazole, reactions at the 4 position of the triazolyl, but also ortho to the triazolyl on the phenyl group, were observed. The results were analyzed with the help of the CH acidities of the substrates, determined in THF solution using the DFT B3LYP method. 4-Iodo-2-phenyl-1,2,3-triazole and 4-iodo-2-(2-iodophenyl)-1,2,3-triazole were next involved in Suzuki coupling reactions to furnish the corresponding 4-arylated and 4,2’-diarylated derivatives. When evaluated for biological activities, the latter (which are resveratrol analogues) showed moderate antibacterial activity and promising antiproliferative effect against MDA-MB-231 cell line

    Advances on antiviral activity of Morus spp. plant extracts: Human coronavirus and virus-related respiratory tract infections in the spotlight

    Get PDF
    (1) Background: Viral respiratory infections cause life-threatening diseases in millions of people worldwide every year. Human coronavirus and several picornaviruses are responsible for worldwide epidemic outbreaks, thus representing a heavy burden to their hosts. In the absence of specific treatments for human viral infections, natural products offer an alternative in terms of innovative drug therapies. (2) Methods: We analyzed the antiviral properties of the leaves and stem bark of the mulberry tree (Morus spp.). We compared the antiviral activity of Morus spp. on enveloped and nonenveloped viral pathogens, such as human coronavirus (HCoV 229E) and different members of the Picornaviridae family—human poliovirus 1, human parechovirus 1 and 3, and human echovirus 11. The antiviral activity of 12 water and water–alcohol plant extracts of the leaves and stem bark of three different species of mulberry—Morus alba var. alba, Morus alba var. rosa, and Morus rubra—were evaluated. We also evaluated the antiviral activities of kuwanon G against HCoV-229E. (3) Results: Our results showed that several extracts reduced the viral titer and cytopathogenic effects (CPE). Leaves’ water-alcohol extracts exhibited maximum antiviral activity on human coronavirus, while stem bark and leaves’ water and water-alcohol extracts were the most effective on picornaviruses. (4) Conclusions: The analysis of the antiviral activities of Morus spp. offer promising applications in antiviral strategies
    corecore