21,707 research outputs found

    Simple Non-Markovian Microscopic Models for the Depolarizing Channel of a Single Qubit

    Full text link
    The archetypal one-qubit noisy channels ---depolarizing, phase-damping and amplitude-damping channels--- describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models which describe phase damping and amplitude damping channels are briefly reviewed.Comment: 13 pages, 2 figures. Title corrected. Paper rewritten. Added references. Some typos and errors corrected. Author adde

    Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model — a sensitivity study

    Get PDF
    Clinical gait analysis is widely used in clinical routine to assess the function of patients with motor disorders. The proper assessment of the patient’s function relies greatly on the repeatability between the measurements. Marker misplacement has been reported as the largest source of variability between measurements and its impact on kinematics is not fully understood. Thus, the purpose of this study was: 1) to evaluate the impact of the misplacement of the lateral femoral epicondyle marker on lower limb kinematics, and 2) evaluate if such impact can be predicted. The kinematic data of 10 children with cerebral palsy and 10 aged-match typical developing children were included. The lateral femoral epicondyle marker was virtually misplaced around its measured position at different magnitudes and directions. The outcome to represent the impact of each marker misplacement on the lower limb was the root mean square deviations between the resultant kinematics from each simulated misplacement and the originally calculated kinematics. Correlation and regression equations were estimated between the root mean square deviation and the magnitude of the misplacement expressed in percentage of leg length. Results indicated that the lower-limb kinematics is highly sensitive to the lateral femoral epicondyle marker misplacement in the anterior-posterior direction. The joint angles most impacted by the anterior-posterior misplacement were the hip internal-external rotation (5.3° per 10 mm), the ankle internal-external rotation (4.4° per 10 mm) and the knee flexion-extension (4.2° per 10 mm). Finally, it was observed that the lower the leg length, the higher the impact of misplacement on kinematics. This impact was predicted by regression equations using the magnitude of misplacement expressed in percentage of leg length. An error below 5° on all joints requires a marker placement repeatability under 1.2% of the leg length. In conclusion, the placement of the lateral femoral epicondyle marker in the antero-posterior direction plays a crucial role on the reliability of gait measurements with the Conventional Gait Model

    Bound-states and polarized charged zero modes in three-dimensional topological insulators induced by a magnetic vortex

    Full text link
    By coating a three-dimensional topological insulator (TI) with a ferromagnetic film supporting an in-plane magnetic vortex, one breaks the time-reversal symmetry (TRS) without generating a mass gap. It rather yields electronic states bound to the vortex center which have different probabilities associated with each spin mode. In addition, its associate current (around the vortex center) is partially polarized with an energy gap separating the most excited bound state from the scattered ones. Charged zero-modes also appear as fully polarized modes localized near the vortex center. From the magnetic point of view, the observation of such a special current in a TI-magnet sandwich comes about as an alternative technique for detecting magnetic vortices in magnetic thin films.Comment: 8 pages, 3 figures, new version with more discussions and results accepted for publication in The European Physical Journal

    Beam loading in the nonlinear regime of plasma-based acceleration

    Full text link
    A theory that describes how to load negative charge into a nonlinear, three-dimensional plasma wakefield is presented. In this regime, a laser or an electron beam blows out the plasma electrons and creates a nearly spherical ion channel, which is modified by the presence of the beam load. Analytical solutions for the fields and the shape of the ion channel are derived. It is shown that very high beam-loading efficiency can be achieved, while the energy spread of the bunch is conserved. The theoretical results are verified with the Particle-In-Cell code OSIRIS.Comment: 5 pages, 2 figures, to appear in Physical Review Letter

    A global simulation for laser driven MeV electrons in 50μm50\mu m-diameter fast ignition targets

    Full text link
    The results from 2.5-dimensional Particle-in-Cell simulations for the interaction of a picosecond-long ignition laser pulse with a plasma pellet of 50-μm\mu m diameter and 40 critical density are presented. The high density pellet is surrounded by an underdense corona and is isolated by a vacuum region from the simulation box boundary. The laser pulse is shown to filament and create density channels on the laser-plasma interface. The density channels increase the laser absorption efficiency and help generate an energetic electron distribution with a large angular spread. The combined distribution of the forward-going energetic electrons and the induced return electrons is marginally unstable to the current filament instability. The ions play an important role in neutralizing the space charges induced by the the temperature disparity between different electron groups. No global coalescing of the current filaments resulted from the instability is observed, consistent with the observed large angular spread of the energetic electrons.Comment: 9 pages, 6 figures, to appear in Physics of Plasmas (May 2006
    • …
    corecore