7,234 research outputs found

    Exchange-Only Dynamical Decoupling in the 3-Qubit Decoherence Free Subsystem

    Full text link
    The Uhrig dynamical decoupling sequence achieves high-order decoupling of a single system qubit from its dephasing bath through the use of bang-bang Pauli pulses at appropriately timed intervals. High-order decoupling of single and multiple qubit systems from baths causing both dephasing and relaxation can also be achieved through the nested application of Uhrig sequences, again using single-qubit Pauli pulses. For the 3-qubit decoherence free subsystem (DFS) and related subsystem encodings, Pauli pulses are not naturally available operations; instead, exchange interactions provide all required encoded operations. Here we demonstrate that exchange interactions alone can achieve high-order decoupling against general noise in the 3-qubit DFS. We present decoupling sequences for a 3-qubit DFS coupled to classical and quantum baths and evaluate the performance of the sequences through numerical simulations

    Quantum Impurities and the Neutron Resonance Peak in YBa2Cu3O7{\bf YBa_2 Cu_3 O_7}: Ni versus Zn

    Full text link
    The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin dynamics of an optimally doped high temperature superconductor is compared in two samples with almost identical superconducting transition temperatures: YBa2_2(Cu0.97_{0.97}Ni0.03_{0.03})3_3O7_7 (Tc_c=80 K) and YBa2_2(Cu0.99_{0.99}Zn0.01_{0.01})3_3O7_7 (Tc_c=78 K). In the Ni-substituted system, the magnetic resonance peak (which is observed at Er≃_r \simeq40 meV in the pure system) shifts to lower energy with a preserved Er_r/Tc_c ratio while the shift is much smaller upon Zn substitution. By contrast Zn, but not Ni, restores significant spin fluctuations around 40 meV in the normal state. These observations are discussed in the light of models proposed for the magnetic resonance peak.Comment: 3 figures, submitted to PR

    Low-energy renormalization of the electron dispersion of high-Tc_c superconductors

    Full text link
    High-resolution ARPES studies in cuprates have detected low-energy changes in the dispersion and absorption of quasi-particles at low temperatures, in particular, in the superconducting state. Based on a new 1/N expansion of the t-J-Holstein model, which includes collective antiferromagnetic fluctuations already in leading order, we argue that the observed low-energy structures are mainly caused by phonons and not by spin fluctuations, at least, in the optimal and overdoped regime.Comment: 6 pages, 3 figure

    A Loosely-Coupled Collaborative Integrated Environmental Modelling Framework

    Get PDF
    Integration of environmental models requires full support of the modelling community. When a large number of models are integrated, it requires consistency within scale, datasets, and model to model interactions to minimize the uncertainty among the models. The integrated environmental modelling (IEM) framework is a necessary approach to integrate multiple environmental models for a particular study. When modellers cannot afford considerable amount of time to get involved with full and tightly-integrated IEM or an IEM has very short time frame to complete, then a loosely-coupled collaborative IEM environment can provide the benefits of the integrated approach while minimizing the effort of each individual modeller. However, such a framework will require setting rules that all participants must adhere to. These rules address the issues of model inputs and model to model interaction. The framework should also provide value-added functionality to make the IEM framework more transparent and applicable

    Effect of Nonmagnetic Impurities on the Magnetic Resonance Peak in YBa2Cu3O7

    Full text link
    The magnetic excitation spectrum of a YBa_2 Cu_3 O_7 crystal containing 0.5% of nonmagnetic (Zn) impurities has been determined by inelastic neutron scattering. Whereas in the pure system a sharp resonance peak at E ~ 40 meV is observed exclusively below the superconducting transition temperature T_c, the magnetic response in the Zn-substituted system is broadened significantly and vanishes at a temperature much higher than T_c. The energy-integrated spectral weight observed near q = (pi,pi) increases with Zn substitution, and only about half of the spectral weight is removed at T_c

    Efficient Coherent Control by Optimized Sequences of Pulses of Finite Duration

    Full text link
    Reliable long-time storage of arbitrary quantum states is a key element for quantum information processing. In order to dynamically decouple a spin or quantum bit from a dephasing environment, we introduce an optimized sequence of NN control pulses of finite durations \tau\pp and finite amplitudes. The properties of this sequence of length TT stem from a mathematically rigorous derivation. Corrections occur only in order TN+1T^{N+1} and \tau\pp^3 without mixed terms such as T^N\tau\pp or T^N\tau\pp^2. Based on existing experiments, a concrete setup for the verification of the properties of the advocated realistic sequence is proposed.Comment: 8 pages, 1 figur
    • …
    corecore