15,787 research outputs found

    Magnetic Collective Mode Dispersion in High Temperature Superconductors

    Full text link
    Recent neutron scattering experiments in the superconducting state of YBCO have been interpreted in terms of a magnetic collective mode whose dispersion relative to the commensurate wavevector has a curvature opposite in sign to a conventional magnon dispersion. The purpose of this article is to demonstrate that simple linear response calculations are in support of a collective mode interpretation, and to explain why the dispersion has the curvature it does.Comment: 3 pages, revtex, 4 encapsulated postscript figure

    Randomized Benchmarking as Convolution: Fourier Analysis of Gate Dependent Errors

    Get PDF
    We provide an alternative proof of Wallman's [Quantum 2, 47 (2018)] and Proctor's [Phys. Rev. Lett. 119, 130502 (2017)] bounds on the effect of gate-dependent noise on randomized benchmarking (RB). Our primary insight is that a RB sequence is a convolution amenable to Fourier space analysis, and we adopt the mathematical framework of Fourier transforms of matrix-valued functions on groups established in recent work from Gowers and Hatami [Sbornik: Mathematics 208, 1784 (2017)]. We show explicitly that as long as our faulty gate-set is close to some representation of the Clifford group, an RB sequence is described by the exponential decay of a process that has exactly two eigenvalues close to one and the rest close to zero. This framework also allows us to construct a gauge in which the average gate-set error is a depolarizing channel parameterized by the RB decay rates, as well as a gauge which maximizes the fidelity with respect to the ideal gate-set

    Exchange-Only Dynamical Decoupling in the 3-Qubit Decoherence Free Subsystem

    Full text link
    The Uhrig dynamical decoupling sequence achieves high-order decoupling of a single system qubit from its dephasing bath through the use of bang-bang Pauli pulses at appropriately timed intervals. High-order decoupling of single and multiple qubit systems from baths causing both dephasing and relaxation can also be achieved through the nested application of Uhrig sequences, again using single-qubit Pauli pulses. For the 3-qubit decoherence free subsystem (DFS) and related subsystem encodings, Pauli pulses are not naturally available operations; instead, exchange interactions provide all required encoded operations. Here we demonstrate that exchange interactions alone can achieve high-order decoupling against general noise in the 3-qubit DFS. We present decoupling sequences for a 3-qubit DFS coupled to classical and quantum baths and evaluate the performance of the sequences through numerical simulations

    On Measuring Condensate Fraction in Superconductors

    Full text link
    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high temperature superconductors come very close to achieving this goal.Comment: 4 pages, 1 eps figure, RevTex. A new possibility in the underdoped regime is added. Other corrections are mino

    Leptogenesis from Soft Supersymmetry Breaking (Soft Leptogenesis)

    Full text link
    Soft leptogenesis is a scenario in which the cosmic baryon asymmetry is produced from a lepton asymmetry generated in the decays of heavy sneutrinos (the partners of the singlet neutrinos of the seesaw) and where the relevant sources of CP violation are the complex phases of soft supersymmetry-breaking terms. We explain the motivations for soft leptogenesis, and review its basic ingredients: the different CP-violating contributions, the crucial role played by thermal corrections, and the enhancement of the efficiency from lepton flavour effects. We also discuss the high temperature regime T>107T > 10^7 GeV in which the cosmic baryon asymmetry originates from an initial asymmetry of an anomalous RR-charge, and soft leptogenesis reembodies in RR-genesis.Comment: References updated. Some minor corrections to match the published versio

    Quantum Impurities and the Neutron Resonance Peak in YBa2Cu3O7{\bf YBa_2 Cu_3 O_7}: Ni versus Zn

    Full text link
    The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin dynamics of an optimally doped high temperature superconductor is compared in two samples with almost identical superconducting transition temperatures: YBa2_2(Cu0.97_{0.97}Ni0.03_{0.03})3_3O7_7 (Tc_c=80 K) and YBa2_2(Cu0.99_{0.99}Zn0.01_{0.01})3_3O7_7 (Tc_c=78 K). In the Ni-substituted system, the magnetic resonance peak (which is observed at Er≃_r \simeq40 meV in the pure system) shifts to lower energy with a preserved Er_r/Tc_c ratio while the shift is much smaller upon Zn substitution. By contrast Zn, but not Ni, restores significant spin fluctuations around 40 meV in the normal state. These observations are discussed in the light of models proposed for the magnetic resonance peak.Comment: 3 figures, submitted to PR

    A "kilonova" associated with short-duration gamma-ray burst 130603B

    Full text link
    Short-duration gamma-ray bursts (SGRBs) are intense flashes of cosmic gamma-rays, lasting less than ~2 s, whose origin is one of the great unsolved questions of astrophysics today. While the favoured hypothesis for their production, a relativistic jet created by the merger of two compact stellar objects (specifically, two neutron stars, NS-NS, or a neutron star and a black hole, NS-BH), is supported by indirect evidence such as their host galaxy properties, unambiguous confirmation of the model is still lacking. Mergers of this kind are also expected to create significant quantities of neutron-rich radioactive species, whose decay should result in a faint transient in the days following the burst, a so-called "kilonova". Indeed, it is speculated that this mechanism may be the predominant source of stable r-process elements in the Universe. Recent calculations suggest much of the kilonova energy should appear in the near-infrared (nIR) due to the high optical opacity created by these heavy r-process elements. Here we report strong evidence for such an event accompanying SGRB 130603B. If this simplest interpretation of the data is correct, it provides (i) support for the compact object merger hypothesis of SGRBs, (ii) confirmation that such mergers are likely sites of significant r-process production and (iii) quite possibly an alternative, un-beamed electromagnetic signature of the most promising sources for direct detection of gravitational waves.Comment: preprint of paper appearing in Nature (3 Aug 2013

    A New Normal: How COVID-19 and Digital Contact Tracing Highlight a Need for New Fourth Amendment Norms

    Get PDF
    Contact tracing helps epidemiologists identify individuals who have been exposed to a virus. Manual contact tracing has been used for decades to interrupt the transmission of disease and reduce the number of infections within a population. It is a pillar of disease control. But the manual process has certain limitations—it is time-intensive, expensive, and subject to human error. Digital contact tracing overcomes these limitations. Using GPS and Bluetooth technologies, digital contact tracing applications automate and expedite the tracing and notification processes, with life-saving implications. In 2020, countries that implemented contact tracing technology in response to COVID-19 contained outbreaks, minimized incidence of the virus, and kept death tolls comparatively low. Notwithstanding the urgent public health need COVID-19 created, privacy-minded Americans were and continue to be resistant to digital contact tracing. Instead of widespread adoption of the technology, there is widespread concern that data collected via contact tracing apps will be co-opted, de-anonymized, and used by law enforcement for non-public health purposes. Is this concern warranted? Can the government demand a record of your location data from Apple and Google without implicating your Fourth Amendment rights? Can it secure this data without a warrant or probable cause? The answer to all these questions is, most likely, yes. Although the Fourth Amendment limits the government’s search and seizure powers, Americans who opt to use contact tracing apps—for the sake of their health and the public health at large—position themselves outside the bounds of Fourth Amendment protections. In other words, Americans can choose health or privacy, but not both. Surely, that should not be our norm. We need a new normal. This Comment, therefore, discusses how jurisprudence fails to protect the rights of U.S. citizens using contact tracing applications. It details the current Fourth Amendment tests and doctrines, including the Katz test (which centers around reasonable expectations of privacy) and the third-party doctrine (which says a person has no legitimate expectation of privacy in information supplied to third parties). Given the public health benefits of an effective contact tracing system, this Comment considers why changes to the Fourth Amendment framework—ones that accommodate the competing privacy and welfare needs of the twenty-first century—are warranted. Ultimately, this Comment proposes that the Supreme Court eliminate the Katz test and overturn the third-party doctrine to extend Fourth Amendment protections to information like location data captured by life-saving technologies
    • …
    corecore