19 research outputs found

    Urocortin-1 within the Centrally-Projecting Edinger-Westphal Nucleus Is Critical for Ethanol Preference

    Get PDF
    Converging lines of evidence point to the involvement of neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) containing the neuropeptide Urocortin-1 (Ucn1) in excessive ethanol (EtOH) intake and EtOH sensitivity. Here, we expanded these previous findings by using a continuous-access, two-bottle choice drinking paradigm (3%, 6%, and 10% EtOH vs. tap water) to compare EtOH intake and EtOH preference in Ucn1 genetic knockout (KO) and wild-type (WT) mice. Based on previous studies demonstrating that electrolytic lesion of the EWcp attenuated EtOH intake and preference in high-drinking C57BL/6J mice, we also set out to determine whether EWcp lesion would differentially alter EtOH consumption in Ucn1 KO and WT mice. Finally, we implemented well-established place conditioning procedures in KO and WT mice to determine whether Ucn1 and the corticotropin-releasing factor type-2 receptor (CRF-R2) were involved in the rewarding and aversive effects of EtOH (2 g/kg, i.p.). Results from these studies revealed that (1) genetic deletion of Ucn1 dampened EtOH preference only in mice with an intact EWcp, but not in mice that received lesion of the EWcp, (2) lesion of the EWcp dampened EtOH intake in Ucn1 KO and WT mice, but dampened EtOH preference only in WT mice expressing Ucn1, and (3) genetic deletion of Ucn1 or CRF-R2 abolished the conditioned rewarding effects of EtOH, but deletion of Ucn1 had no effect on the conditioned aversive effects of EtOH. The current findings provide strong support for the hypothesis that EWcp-Ucn1 neurons play an important role in EtOH intake, preference, and reward

    Increased perioculomotor urocortin 1 immunoreactivity in genetically selected alcohol preferring rats.

    No full text
    INTRODUCTION: Urocortin 1 (Ucn 1) is an endogenous peptide related to the corticotropin-releasing factor (CRF). Ucn 1 is mainly expressed in the perioculomotor area (pIII), and its involvement in alcohol self-administration is well confirmed in mice. In other species, the relationship between the perioculomotor Ucn 1-containing population of neurons (pIIIu) and alcohol consumption needs further investigation. The pIII also has a significant subpopulation of dopaminergic neurons. Because of dopamine's (DA) role in addiction, it is important to evaluate whether this subpopulation of neurons contributes to addiction-related phenotypes. Furthermore, the effects of gender on the relationship between Ucn 1 and tyrosine hydroxylase (TH) in pIII and alcohol preference in rats have not been previously assessed. METHODS: To address these issues, we compared 2 Sardinian alcohol-preferring sublines of rats, a population maintained at the Scripps Research Institute (Scr:sP) and a population maintained at University of Camerino-Marchigian Sardinian preferring rats (msP), to corresponding nonselectively bred Wistar rats of both sexes. Ucn 1- and TH-positive cells were detected on coronal midbrain sections from 6- to 8-week-old alcohol-naïve animals using brightfield and fluorescent immunohistochemistry. Ucn 1- and TH-positive cells in pIII were counted in the perioculomotor area, averaged across 2 to 3 sets, and binned into 3 bregma levels. RESULTS: Results demonstrated increased average counts of Ucn 1-positive cells in the middle bregma level in preferring male rats compared to Wistar controls and no difference in TH-positive cell counts in pIII. In addition, fluorescent double labeling revealed no colocalization of Ucn 1-positive and TH-positive neurons. Ucn 1 but not TH distribution was influenced by gender with female animals expressing more Ucn 1-positive cells than male animals in the peak bregma level. CONCLUSIONS: These findings extend previous reports of increased Ucn 1-positive cell distribution in preferring lines of animals. They indicate that Ucn1 contributes to increased alcohol consumption across different species and that this contribution could be gender specific. The results also suggest that Ucn1 regulates positive reinforcing rather than aversive properties of alcohol and that these effects could be mediated by CRF(2) receptors, independent of direct actions of DA

    Synthesis, Molecular Docking, In Vitro and In Vivo Studies of Novel Dimorpholinoquinazoline-Based Potential Inhibitors of PI3K/Akt/mTOR Pathway

    No full text
    A (series) range of potential dimorpholinoquinazoline-based inhibitors of the PI3K/Akt/mTOR cascade was synthesized. Several compounds exhibited cytotoxicity towards a panel of cancer cell lines in the low and sub-micromolar range. Compound 7c with the highest activity and moderate selectivity towards MCF7 cells which express the mutant type of PI3K was also tested for the ability to inhibit PI3K-(signaling pathway) downstream effectors and associated proteins. Compound 7c inhibited the phosphorylation of Akt, mTOR, and S6K at 125–250 nM. It also triggered PARP1 cleavage, ROS production, and cell death via several mechanisms. Inhibition of PI3Kα was observed at a concentration of 7b 50 µM and of 7c 500 µM and higher, that can indicate minority PI3Kα as a target among other kinases in the titled cascade for 7c. In vivo studies demonstrated an inhibition of tumor growth in the colorectal tumor model. According to the docking studies, the replacement of the triazine core in gedatolisib (8) by a quinazoline fragment, and incorporation of a (hetero)aromatic unit connected with the carbamide group via a flexible spacer, can result in more selective inhibition of the PI3Kα isoform
    corecore