15 research outputs found

    Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an <it>in vitro </it>system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment.</p> <p>Results</p> <p>We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days <it>in vitro</it>.</p> <p>Conclusion</p> <p>This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed <it>in vivo</it>. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.</p

    Modulation of Ryanodine Receptors Activity Alters the Course of Experimental Autoimmune Encephalomyelitis in Mice

    No full text
    Ryanodine receptors (RyRs), the intracellular Ca2+ release channels, are expressed in T lymphocytes and other types of immune cells. Modulation of RyRs has been shown to affect T cell functions in vitro and immune responses in vivo. The effects of modulation of RyRs on the development of autoimmune diseases have not been investigated. Here we studied how modulation of RyRs through administration of RyR inhibitor dantrolene or introducing a gain-of-function RYR1-p.R163C mutation affects clinical progression of experimental autoimmune encephalomyelitis (EAE) in mice, a T cell-mediated autoimmune neuroinflammatory disease. We found that daily intraperitoneal administration of 5 or 10 mg/kg dantrolene beginning at the time of EAE induction significantly reduced the severity of EAE clinical symptoms and dampened inflammation in the spinal cord. The protective effect of dantrolene on EAE was reversible. Dantrolene administration elicited dose-dependent skeletal muscle weakness: mice that received 10 mg/kg dose developed a waddling gait, while 5 mg/kg dantrolene dose administration produced a reduction in four-limb holding impulse values. Mice bearing the gain-of-function RYR1-p.R163C mutation developed the EAE clinical symptoms faster and more severely than wild-type mice. This study demonstrates that RyRs play a significant role in EAE pathogenesis and suggests that inhibition of RyRs with low doses of dantrolene may have a protective effect against autoimmunity and inflammation in humans

    Single Channel Properties and Regulated Expression of Ca\u3csup\u3e2+\u3c/sup\u3e Release-Activated Ca\u3csup\u3e2+\u3c/sup\u3e (CRAC) Channels in Human T Cells

    No full text
    Although the crucial role of Ca2+ influx in lymphocyte activation has been well documented, little is known about the properties or expression levels of Ca2+ channels in normal human T lymphocytes. The use of Na+ as the permeant ion in divalent-free solution permitted Ca2+ release-activated Ca2+ (CRAC) channel activation, kinetic properties, and functional expression levels to be investigated with single channel resolution in resting and phytohemagglutinin (PHA)-activated human T cells. Passive Ca2+ store depletion resulted in the opening of 41-pS CRAC channels characterized by high open probabilities, voltage-dependent block by extracellular Ca2+ in the micromolar range, selective Ca2+ permeation in the millimolar range, and inactivation that depended upon intracellular Mg2+ ions. The number of CRAC channels per cell increased greatly from ∼15 in resting T cells to ∼140 in activated T cells. Treatment with the phorbol ester PMA also increased CRAC channel expression to ∼60 channels per cell, whereas the immunosuppressive drug cyclosporin A (1 μM) suppressed the PHA-induced increase in functional channel expression. Capacitative Ca2+ influx induced by thapsigargin was also significantly enhanced in activated T cells. We conclude that a surprisingly low number of CRAC channels are sufficient to mediate Ca2+ influx in human resting T cells, and that the expression of CRAC channels increases ∼10-fold during activation, resulting in enhanced Ca2+ signaling
    corecore