104 research outputs found

    DeterminaciĂłn de inclusiones porosas y delaminaciones en materiales compuestos mediante ultrasonidos

    Full text link
    En este artículo vamos a mostrar la posibilidad de detectar posibles defectos en materiales compuestos mediante la utilización de una técnica de Ensayos No Destructivos (END) como es la técnica de ultrasonidos. En este caso se determinará la posible detección de impurezas, porosidad y delaminaciones presente en materiales compuestos.Fombuena Borrás, V. (2016). Determinación de inclusiones porosas y delaminaciones en materiales compuestos mediante ultrasonidos. http://hdl.handle.net/10251/68351DE

    DescripciĂłn de ventajas econĂłmicas directas e indirectas en la aplicaciĂłn de Ensayos No Destructivos (END) en un proceso productivo

    Full text link
    Mediante el presente artículo se muestran las principales ventajas económicas directas e indirectas de aplicación de técnicas de Ensayos No Destructivos (END) en diferentes procesos productivos. Se detalla mediante descripciones teóricas y sencillos ejemplos prácticos como los END pueden reducir los costes de producción y aumentar el valor añadido y la calidad de un producto.Fombuena Borrás, V. (2017). Descripción de ventajas económicas directas e indirectas en la aplicación de Ensayos No Destructivos (END) en un proceso productivo. http://hdl.handle.net/10251/82149DE

    Cálculo de la rentabilidad económica en el empleo de técnicas de Ensayos No Destructivos (END) en un proceso productivo

    Full text link
    Mediante la lectura del artículo docente, el alumno verá un ejemplo práctico del cálculo de la rentabilidad económica directa (aumento de beneficios) de diferentes escenarios de aplicación de Ensayos No Destructivos (END). Mediante la resolución de un sencillo ejemplo, se transmite la imporancia del uso de este tipo de técnicas en los controles de calidad actuales en procesos productivos.Fombuena Borrás, V. (2017). Cálculo de la rentabilidad económica en el empleo de técnicas de Ensayos No Destructivos (END) en un proceso productivo. http://hdl.handle.net/10251/82144DE

    Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite Nanotubes

    Full text link
    [EN] Hydroxyapatite (HA) and Halloysite nanotubes (HNTs) percentages have been optimized in Polycaprolactone (PCL) polymeric matrices to improve mechanical, thermal and biological properties of the composites, thus, to be applied in bone tissue engineering or as fixation plates. Addition of HA guarantees a proper compatibility with human bone due to its osteoconductive and osteoinductive properties, facilitating bone regeneration in tissue engineering applications. Addition of HNTs ensures the presence of tubular structures for subsequent drug loading in their lumen, of molecules such as curcumin, acting as controlled drug delivery systems. The addition of 20% of HA and different amounts of HNTs leads to a substantial improvement in mechanical properties with values of flexural strength up to 40% over raw PCL, with an increase in degradation temperature. DMA analyses showed stability in mechanical and thermal properties, having as a result a potential composite to be used as tissue engineering scaffold or resorbable fixation plate.Torres-Roca, E.; Fombuena, V.; Vallés Lluch, A.; Ellingham, T. (2017). Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite Nanotubes. Materials Science and Engineering C. 75:418-424. doi:10.1016/j.msec.2017.02.087S4184247

    Hacia una economía circular caso práctico de dimensionado de unidad de almacenaje de residuos ogánicos para proceso de compost

    Full text link
    La lectura de dicho artículo tiene como objetivos otorgar al lector los siguientes ítems: ¿ Puesta en situación de los residuos generados en la industria vinícola. ¿ Enseñar y detallar como se puede diseñar una unidad de compostaje, tanto su área de almacenamiento como las dimensiones de las pilas necesarias para compostar. ¿Interpretación de los resultados obtenidos del dimensionamiento de la unidad de compostaje.Fombuena Borrás, V.; Domínguez Candela, I. (2020). Hacia una economía circular caso práctico de dimensionado de unidad de almacenaje de residuos ogánicos para proceso de compost. http://hdl.handle.net/10251/144594DE

    Disintegration in compost conditions and water uptake of green composites from poly(lactic acid) and hazelnut shell flour

    Full text link
    [EN] Green composites of poly(lactic acid)-PLA and hazelnut shell flour (HSF) with and without epoxidized linseed oil (ELO) as plasticizer/compatibilizer were subjected to different aging conditions such as water uptake by immersion and disintegration in compost soil. The effect of the hydrolytic degradation was analyzed by measuring the weight gain as a function of the immersion time in water and calculating the corresponding diffusion coefficients. As expected, the water diffusion coefficient increases with HSF content while no remarkable change is obtained for plasticized compositions with ELO. Differential scanning calorimetry reveals a noticeable increase in crystallinity after the degradation process by water immersion. Degradation in controlled compost soil was followed thorough measurements of weight changes. In general, the weight change for a particular degradation time is lower as the HSF content increases. In addition, presence of ELO as plasticizer/compatibilizer delays the degradation process in compost soil. Scanning electron microscopy highlighted a noticeable deterioration of aged samples after 2 weeks with multiple crack formation and high surface abrasion due to microbial activity after 4 weeks.This research was supported by the Ministry of Economy and Competitiveness - MINECO, Ref: MAT2014-59242-C2-1-R. Authors also thank to "Conselleria d'Educacio, Cultura i Esport" - Generalitat Valenciana, Ref: GV/2014/008 for financial support.Balart, J.; Montanes, N.; Fombuena, V.; Boronat, T.; Sanchez-Nacher, L. (2018). Disintegration in compost conditions and water uptake of green composites from poly(lactic acid) and hazelnut shell flour. Journal of Polymers and the Environment. 26(2):701-715. https://doi.org/10.1007/s10924-017-0988-3S701715262Altun Y, Dogan M, Bayramli E (2013) J Environ Polym Degrad 21:850–856Ferrero B, Fombuena V, Fenollar O, Boronat T, Balart R (2015) Polym Compos 36:1378–1385Nachtigall SMB, Cerveira GS, Rosa SML (2007) Polym Test 26:619–628Pilla S, Gong S, O’Neill E, Rowell RM, Krzysik AM (2008) Polym Eng Sci 48:578–587Tserki V, Matzinos P, Panayiotou C (2006) Compos Part A 37:1231–1238Bogoeva-Gaceva G, Avella M, Malinconico M, Buzarovska A, Grozdanov A, Gentile G, Errico ME (2007) Polym Compos 28:98–107Mohanty AK, Misra M, Drzal LT (2002) J Environ Polym Degrad 10:19–26Mukherjee T, Kao N (2011) J Environ Polym Degrad 19:714–725Petchwattana N, Covavisaruch S (2014) J Bionic Eng 11:630–637Singh S, Mohanty AK (2007) Compos Sci Technol 67:1753–1763Summerscales J, Dissanayake N, Virk A, Hall W (2010) Compos Part A 41:1336–1344Xie H, Jarvi P, Karesoja M, King A, Kilpelainen I, Argyropoulos DS (2009) J Appl Polym Sci 111:2468–2476Arbelaiz A, Fernandez B, Ramos JA, Retegi A, Llano-Ponte R, Mondragon I (2005) Compos Sci Technol 65:1582–1592Gil-Castell O, Badia JD, Kittikorn T, Stromberg E, Martinez-Felipe A, Ek M, Karlsson S, Ribes-Greus A (2014) Polym Degrad Stab 108:212–222Le Duigou A, Bourmaud A, Davies P, Baley C (2014) Ocean Eng 90:140–148Porebska R, Rybak A, Kozub B, Sekula R (2015) Polym Adv Technol 26:1076–1082Martin O, Averous L (2001) Polymer 42:6209–6219Perinovic S, Andricic B, Erceg M (2010) Thermochim Acta 510:97–102Li S, Wang C, Zhuang X, Hu Y, Chu F (2011) J Environ Polym Degrad 19:301–311Li Y, Venkateshan K, Sun XS (2010) Polym Int 59:1099–1109Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biotechnol Adv 26:246–265Yussuf AA, Massoumi I, Hassan A (2010) J Environ Polym Degrad 18:422–429Way C, Wu DY, Cram D, Dean K, Palombo E (2013) J Environ Polym Degrad 21:54–70Kumar R, Yakubu MK, Anandjiwala RD (2010) Express Polym Lett 4:423–430Ohkita T, Lee SH (2006) J Appl Polym Sci 100:3009–3017Wu C-S (2012) J Appl Polym Sci 123:347–355Wu C-S (2015) Polym Degrad Stab 121:51–59Yaacob ND, Ismail H, Ting SS (2016) Bioresources 11:1255–1269Birnin-Yauri AU, Ibrahim NA, Zainuddin N, Abdan K, Then YY, Chieng BW (2016) Bioresources 11:3332–3355Orue A, Jauregi A, Unsuain U, Labidi J, Eceiza A, Arbelaiz A (2016) Composites Part A 84:186–195Perez-Fonseca AA, Robledo-Ortiz JR, Gonzalez-Nunez R, Rodrigue D (2016) J Appl Polym Sci 133:9Regazzi A, Corn S, Ienny P, Benezet JC, Bergeret A (2016) Ind Crops Prod 84:358–365Zafar MT, Maiti SN, Ghosh AK (2016) Fibers Polym 17:266–274Luo Y-B, Wang X-L, Wang Y-Z (2012) Polym Degrad Stab 97:721–728Tham WL, Poh BT, Ishak ZAM, Chow WS (2015) J Environ Polym Degrad 23:242–250Itavaara M, Karjomaa S, Selin JF (2002) Chemosphere 46:879–885Karamanlioglu M, Robson GD (2013) Polym Degrad Stab 98:2063–2071Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ (2013) Polym Test 32:918–926Alimuzzaman S, Gong RH, Akonda M (2014) Polym Compos 35:2094–2102Mathew AP, Oksman K, Sain M (2005) J Appl Polym Sci 97:2014–2025Ray SS, Yamada K, Ogami A, Okamoto M, Ueda K (2002) Macromol Rapid Commun 23:943–947Karlsson S, Albertsson AC (1998) Polym Eng Sci 38:1251–1253Lunt J (1998) Polym Degrad Stab 59:145–152Stloukal P, Pekarova S, Kalendova A, Mattausch H, Laske S, Holzer C, Chitu L, Bodner S, Maier G, Slouf M, Koutny M (2015) Waste Manag 42:31–40Xie L, Xu H, Wang Z-P, Li X-J, Chen J-B, Zhang Z-J, Yin H-M, Zhong G-J, Lei J, Li Z-M (2014) J Polym Res 21:357Balakrishnan H, Hassan A, Imran M, Wahit MU (2011) J Environ Polym Degrad 19:863–875Bocque M, Voirin C, Lapinte V, Caillol S, Robin JJ (2016) J Polym Sci Part A 54:11–33Darie-Nita RN, Vasile C, Irimia A, Lipsa R, Rapa M (2016) J Appl Polym Sci 133:11Fernandez SS, Kunchandy S, Ghosh S (2015) J Environ Polym Degrad 23:526–533Ferri JM, Garcia-Garcia D, Sanchez-Nacher L, Fenollar O, Balart R (2016) Carbohydr Polym 147:60–68Jia PY, Zhang M, Hu LH, Zhou YH (2016) Korean J Chem Eng 33:1080–1087Li SH, Xia JL, Xu YZ, Yang XJ, Mao W, Huang K (2016) Carbohydr Polym 142:250–258Tee YB, Talib RA, Abdan K, Chin NL, Basha RK, Yunos KFM (2016) Bioresources 11:1518–1540Xing C, Matuana LM (2016) J Appl Polym Sci 133:8Deroine M, Le Duigou A, Corre Y-M, Le Gac P-Y, Davies P, Cesar G, Bruzaud S (2014) Polym Degrad Stab 108:319–329Tham WL, Ishak ZAM, Chow WS (2014) Polym Plast Technol Eng 53:472–480Fischer EW, Sterzel HJ, Wegner G (1973) Kolloid-Zeitschrift and Zeitschrift Fur Polymere 251:980–990Ke TY, Sun XZ (2001) J Appl Polym Sci 81:3069–3082Pfister DP, Larock RC (2010) Bioresour Technol 101:6200–6206Islam MS, Pickering KL, Foreman NJ (2010) J Environ Polym Degrad 18:696–704Balart JF, Fombuena V, Fenollar O, Boronat T, Sanchez-Nacher L (2016) Compos Part B 86:168–177Chieng BW, Ibrahim NA, Then YY, Loo YY (2014) Molecules 19:16024–16038Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2013) J Appl Polym Sci 130:4576–4580Liu H, Zhang J (2011) J Polym Sci Part B 49:1051–1083Silverajah VSG, Ibrahim NA, Yunus WMZW, Abu Hassan H, Woei CB (2012) Int J Mol Sci 13:5878–5898Alam J, Alam M, Raja M, Abduljaleel Z, Dass LA (2014) Int J Mol Sci 15:19924–19937Burgos N, Martino VP, Jimenez A (2013) Polym Degrad Stab 98:651–658Murariu M, Ferreira ADS, Alexandre M, Dubois P (2008) Polym Adv Technol 19:636–646Ferri JM, Samper MD, Garcia-Sanoguera D, Reig MJ, Fenollar O, Balart R (2016) J Mater Sci 51:5356–5366Mathew AP, Oksman K, Sain M (2006) J Appl Polym Sci 101:300–31

    Influence of fibre and matrix characteristics on properties and durability of wood-plastic composites in outdoor applications

    Full text link
    [EN] The awareness of society on environmental issues has increased in recent years. This article focuses on the wood-plastic composites (WPCs), obtained from recycled plastics and natural fibres waste, and their application in architecture. In order to give some recommendations to architects regarding the choice of a WPC as an alternative to wood for uses in outdoor decking, a series of standardized physical, mechanical and chemical tests have been carried out on two commercial WPC materials: one with a polyvinyl chloride (PVC) - PVC matrix and rice husk filler and a second one with a polyethylene (PE) - PE matrix and pine wood reinforcement. Mechanical, thermal and ageing behaviour of these commercial WPC has been broadly studied. This research provides value information to find out which WPC material best support durability aspects, those that most concern in an architectural application of outdoor decking. In general terms, WPC developed by PVC matrix and rice husk as filler shown greater physical-mechanical properties, better resistance to chemical agents and greater resistance to ageing behaviour and changes in visual aspect.Vercher Sanchis, J.; Fombuena, V.; Díaz, A.; Soriano Cubells, MJ. (2020). Influence of fibre and matrix characteristics on properties and durability of wood-plastic composites in outdoor applications. Journal of Thermoplastic Composite Materials. 33(4):477-500. https://doi.org/10.1177/0892705718807956S477500334Arenas FJ. El impacto ambiental en la edificación. Criterios para una edificación sostenible, 1st ed. Madrid: Edisofer, 2007, p. 248.Miravete A. Los nuevos materiales en la construcción, 1st ed. Barcelona: Reverté, 1995, p. 394.Kaseem, M., Hamad, K., Deri, F., & Ko, Y. G. (2015). Material properties of polyethylene/wood composites: A review of recent works. Polymer Science Series A, 57(6), 689-703. doi:10.1134/s0965545x15070068Najafi, S. K., Hamidinia, E., & Tajvidi, M. (2006). Mechanical properties of composites from sawdust and recycled plastics. Journal of Applied Polymer Science, 100(5), 3641-3645. doi:10.1002/app.23159La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017Mahboob, Z., El Sawi, I., Zdero, R., Fawaz, Z., & Bougherara, H. (2017). Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 92, 118-133. doi:10.1016/j.compositesa.2016.11.007Paynel, F., Morvan, C., Marais, S., & Lebrun, L. (2013). Improvement of the hydrolytic stability of new flax-based biocomposite materials. Polymer Degradation and Stability, 98(1), 190-197. doi:10.1016/j.polymdegradstab.2012.10.010Badia, J. D., Kittikorn, T., Strömberg, E., Santonja-Blasco, L., Martínez-Felipe, A., Ribes-Greus, A., … Karlsson, S. (2014). Water absorption and hydrothermal performance of PHBV/sisal biocomposites. Polymer Degradation and Stability, 108, 166-174. doi:10.1016/j.polymdegradstab.2014.04.012Alvarez, V. A., & Vázquez, A. (2004). Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polymer Degradation and Stability, 84(1), 13-21. doi:10.1016/j.polymdegradstab.2003.09.003Liu, L., Yu, J., Cheng, L., & Yang, X. (2009). Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polymer Degradation and Stability, 94(1), 90-94. doi:10.1016/j.polymdegradstab.2008.10.013Valdés García, A., Ramos Santonja, M., Sanahuja, A. B., & Selva, M. del C. G. (2014). Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability, 108, 269-279. doi:10.1016/j.polymdegradstab.2014.03.011Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Recent developments in sugar palm ( Arenga pinnata ) based biocomposites and their potential industrial applications: A review. Renewable and Sustainable Energy Reviews, 54, 533-549. doi:10.1016/j.rser.2015.10.037Abdul Khalil, H. P. S., Bhat, I. U. H., Jawaid, M., Zaidon, A., Hermawan, D., & Hadi, Y. S. (2012). Bamboo fibre reinforced biocomposites: A review. Materials & Design, 42, 353-368. doi:10.1016/j.matdes.2012.06.015Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027Maciá, A., Baeza, F. J., Saval, J. M., & Ivorra, S. (2016). Mechanical properties of boards made in biocomposites reinforced with wood and Posidonia oceanica fibers. Composites Part B: Engineering, 104, 1-8. doi:10.1016/j.compositesb.2016.08.018Das, O., Bhattacharyya, D., Hui, D., & Lau, K.-T. (2016). Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Composites Part B: Engineering, 106, 120-128. doi:10.1016/j.compositesb.2016.09.020Fowler, P. A., Hughes, J. M., & Elias, R. M. (2006). Biocomposites: technology, environmental credentials and market forces. Journal of the Science of Food and Agriculture, 86(12), 1781-1789. doi:10.1002/jsfa.2558Dányádi, L., Janecska, T., Szabó, Z., Nagy, G., Móczó, J., & Pukánszky, B. (2007). Wood flour filled PP composites: Compatibilization and adhesion. Composites Science and Technology, 67(13), 2838-2846. doi:10.1016/j.compscitech.2007.01.024Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. doi:10.1016/j.compositesa.2015.06.007Tascioglu, C., Tufan, M., Yalcin, M., & Sen, S. (2016). Determination of biological performance, dimensional stability, mechanical and thermal properties of wood–plastic composites produced from recycled chromated copper arsenate-treated wood. Journal of Thermoplastic Composite Materials, 29(11), 1461-1479. doi:10.1177/0892705714565704Bhaskar, J., Haq, S., & Yadaw, S. (2011). Evaluation and testing of mechanical properties of wood plastic composite. Journal of Thermoplastic Composite Materials, 25(4), 391-401. doi:10.1177/0892705711406158Friedrich, D., & Luible, A. (2016). Investigations on ageing of wood-plastic composites for outdoor applications: A meta-analysis using empiric data derived from diverse weathering trials. Construction and Building Materials, 124, 1142-1152. doi:10.1016/j.conbuildmat.2016.08.123Gourier, C., Bourmaud, A., Le Duigou, A., & Baley, C. (2017). Influence of PA11 and PP thermoplastic polymers on recycling stability of unidirectional flax fibre reinforced biocomposites. Polymer Degradation and Stability, 136, 1-9. doi:10.1016/j.polymdegradstab.2016.12.003Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112. doi:10.1016/j.compositesa.2015.08.038Muthuraj, R., Misra, M., Defersha, F., & Mohanty, A. K. (2016). Influence of processing parameters on the impact strength of biocomposites: A statistical approach. Composites Part A: Applied Science and Manufacturing, 83, 120-129. doi:10.1016/j.compositesa.2015.09.003Gil-Castell, O., Badia, J. D., Kittikorn, T., Strömberg, E., Martínez-Felipe, A., Ek, M., … Ribes-Greus, A. (2014). Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance. Polymer Degradation and Stability, 108, 212-222. doi:10.1016/j.polymdegradstab.2014.06.010Campos, A., Marconcini, J. M., Martins-Franchetti, S. M., & Mattoso, L. H. C. (2012). The influence of UV-C irradiation on the properties of thermoplastic starch and polycaprolactone biocomposite with sisal bleached fibers. Polymer Degradation and Stability, 97(10), 1948-1955. doi:10.1016/j.polymdegradstab.2011.11.010Azwar, E., Vuorinen, E., & Hakkarainen, M. (2012). Pyrolysis-GC–MS reveals important differences in hydrolytic degradation process of wood flour and rice bran filled polylactide composites. Polymer Degradation and Stability, 97(3), 281-287. doi:10.1016/j.polymdegradstab.2011.12.017Soccalingame, L., Perrin, D., Bénézet, J.-C., Mani, S., Coiffier, F., Richaud, E., & Bergeret, A. (2015). Reprocessing of artificial UV-weathered wood flour reinforced polypropylene composites. Polymer Degradation and Stability, 120, 313-327. doi:10.1016/j.polymdegradstab.2015.07.013Soccalingame, L., Perrin, D., Bénézet, J.-C., & Bergeret, A. (2016). Reprocessing of UV-weathered wood flour reinforced polypropylene composites: Study of a natural outdoor exposure. Polymer Degradation and Stability, 133, 389-398. doi:10.1016/j.polymdegradstab.2016.09.011Azwa, Z. N., Yousif, B. F., Manalo, A. C., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47, 424-442. doi:10.1016/j.matdes.2012.11.025Zabel RA, Morrell JJ. Wood microbiology: Decay and its prevention. Cambridge, MA: Academic Press, 2012, p. 498

    Estudio del área de compostaje para la revalorización de residuos orgánicos mediante proceso de compostaje

    Full text link
    En el artículo docente encontrarás la resolución de un caso práctico para la obtención del área necesaria para el compostaje de residuos orgánicos con el fin de una revalorización de los mismosFombuena Borrás, V.; Domínguez Candela, I. (2021). Estudio del área de compostaje para la revalorización de residuos orgánicos mediante proceso de compostaje. http://hdl.handle.net/10251/167349DE

    Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene

    Full text link
    [EN] In this study, three different natural types of unmodified zeolite (chabazite, mordenite, and faujasite) were initially characterized for their morphology, elemental composition, and antimicrobial activity against foodborne bacteria and fungi. The chabazite-type zeolite was selected due to its optimal morphology and lowest silicon to aluminum ratio (Si/Al). This was then solution exchanged with different combinations of silver (Ag+), copper (Cu2+), and zinc (Zn2+) ions to prepare single, binary, and ternary metal cation-modified zeolites. Antimicrobial results clearly indicated that Ag-based zeolites exhibited more antimicrobial activity than Cu- and Zn-based zeolites. Interestingly, the multi-ionic zeolite, that is, the ternary Ag-Cu-Zn-zeolite, was the most efficient antimicrobial sample in terms of the amount of added silver. In the last step, the obtained multi-ionic zeolite was, for the first time, incorporated at different weight amounts (1, 5, 10, and 15 wt%) into a bio-based high-density polyethylene (bio-HDPE) matrix by extrusion and shaped into pieces by injection molding. Novel sustainable polymer composite pieces with improved stiffness and hardness and high antimicrobial activity were obtained. These treated materials offer industrial relevance to control the growth of harmful microorganisms in hygiene applications related to the food industry.Spanish Ministry of Economy and Competitiveness, Grant/Award Number: Project MAT2014-59242-C2-1-R; Conselleria d'Educacio, Cultura i Esport - Generalitat Valenciana, Grant/Award Number: GV/2014/008Torres-Giner, S.; Torres, A.; Ferrándiz, M.; Fombuena, V.; Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety. 37(4). https://doi.org/10.1111/jfs.12348Se1234837

    Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin

    Full text link
    [EN] Highly environmentally-friendly fibreboards were manufactured by hot-press moulding using Posidonia ocaeanica wastes and a partially biobased epoxy resin as binder. Fibreboards with a constant fibre content of 70 wt % were successfully manufactured by thermo-compression. The effects of a conventional alkali treatment were compared to the synergistic effects that additional silanization with two silanes (amino and glycidyl) can exert on the mechanical and thermo-mechanical properties of fibreboards. The results revealed a remarkable improvement of the mechanical properties with the combination of the alkali treatment followed by the silanization. Scanning electron microscopy also revealed increased resin-fibre interactions due to the synergistic effect of both amino- and glycidyl-silanes. These fibreboards represent a formaldehyde-free solution and can positively contribute to sustainable development as the lignocellulosic component is a waste and the binder resin is partially biobased.This work was supported by the Ministry of Economy and Competitiveness-MINECO [MAT2014-59242-C2-1-R]. D. Garcia-Garcia wants to thank the Spanish Ministry of Education, Culture and Sports for the financial support through a FPU grant number FPU13/06011. L. Quiles-Carrillo acknowledges Generalitat Valenciana-GV for financial support through a FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812).Garcia-Garcia, D.; Quiles-Carrillo, L.; Montanes, N.; Fombuena, V.; Balart, R. (2018). Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin. Materials. 11(1). https://doi.org/10.3390/ma11010035S3511
    • …
    corecore