191 research outputs found

    Microscopic mechanism for the 1/8 magnetization plateau in SrCu_2(BO_3)_2

    Full text link
    The frustrated quantum magnet SrCu_2(BO_3)_2 shows a remarkably rich phase diagram in an external magnetic field including a sequence of magnetization plateaux. The by far experimentally most studied and most prominent magnetization plateau is the 1/8 plateau. Theoretically, one expects that this material is well described by the Shastry-Sutherland model. But recent microscopic calculations indicate that the 1/8 plateau is energetically not favored. Here we report on a very simple microscopic mechanism which naturally leads to a 1/8 plateau for realistic values of the magnetic exchange constants. We show that the 1/8 plateau with a diamond unit cell benefits most compared to other plateau structures from quantum fluctuations which to a large part are induced by Dzyaloshinskii-Moriya interactions. Physically, such couplings result in kinetic terms in an effective hardcore boson description leading to a renormalization of the energy of the different plateaux structures which we treat in this work on the mean-field level. The stability of the resulting plateaux are discussed. Furthermore, our results indicate a series of stripe structures above 1/8 and a stable magnetization plateau at 1/6. Most qualitative aspects of our microscopic theory agree well with a recently formulated phenomenological theory for the experimental data of SrCu_2(BO_3)_2. Interestingly, our calculations point to a rather large ratio of the magnetic couplings in the Shastry-Sutherland model such that non-perturbative effects become essential for the understanding of the frustrated quantum magnet SrCu_2(BO_3)_2.Comment: 24 pages, 24 figure

    An alternative field theory for the Kosterlitz-Thouless transition

    Full text link
    We extend a Gaussian model for the internal electrical potential of a two-dimensional Coulomb gas by a non-Gaussian measure term, which singles out the physically relevant configurations of the potential. The resulting Hamiltonian, expressed as a functional of the internal potential, has a surprising large-scale limit: The additional term simply counts the number of maxima and minima of the potential. The model allows for a transparent derivation of the divergence of the correlation length upon lowering the temperature down to the Kosterlitz-Thouless transition point.Comment: final version, extended discussion, appendix added, 8 pages, no figure, uses IOP documentclass iopar

    Distributions of absolute central moments for random walk surfaces

    Full text link
    We study periodic Brownian paths, wrapped around the surface of a cylinder. One characteristic of such a path is its width square, w2w^2, defined as its variance. Though the average of w2w^2 over all possible paths is well known, its full distribution function was investigated only recently. Generalising w2w^2 to w(N)w^{(N)}, defined as the NN-th power of the {\it magnitude} of the deviations of the path from its mean, we show that the distribution functions of these also scale and obtain the asymptotic behaviour for both large and small w(N)w^{(N)}

    Magnetization of SrCu2(BO3)2 in ultrahigh magnetic fields up to 118 T

    Full text link
    The magnetization process of the orthogonal-dimer antiferromagnet SrCu2(BO3)2 is investigated in high magnetic fields of up to 118 T. A 1/2 plateau is clearly observed in the field range 84 to 108 T in addition to 1/8, 1/4 and 1/3 plateaux at lower fields. Using a combination of state-of-the-art numerical simulations, the main features of the high-field magnetization, a 1/2 plateau of width 24 T, a 1/3 plateau of width 34 T, and no 2/5 plateau, are shown to agree quantitatively with the Shastry-Sutherland model if the ratio of inter- to intra-dimer exchange interactions J'/J=0.63. It is further predicted that the intermediate phase between the 1/3 and 1/2 plateau is not uniform but consists of a 1/3 supersolid followed by a 2/5 supersolid and possibly a domain-wall phase, with a reentrance into the 1/3 supersolid above the 1/2 plateau.Comment: 5 pages + 10 pages supplemental materia

    Integrated environmental risk assessment of major accidents in the transport of hazardous substances

    Get PDF
    At present, the environmental risk assessment of major accidents is mainly carried out for stationary risk sources. Only marginal attention is paid to mobile risk sources, while the currently available methodologies require a relevant expertise and time for their application, which is only partially possible in most scenarios. In the present study, an integrated approach to environmental risk assessment in the transport of hazardous substances (iTRANSRISK) was developed. The approach proposed is based on the principle of index-based assessment of leakage scenarios involving toxic and flammable substances during transport, in the context of indexing environmental vulnerability. The key point of the method is the conversion of local-specific data concerning the risk potential of the transported substance, the consequences and the probability of a major accident, and environmental vulnerability assessment into a single entity. The created integral approach is proposed for the needs of carriers of the hazardous substances and the state administration bodies. The proposed approach is determined for the screening risk assessment at the beginning of the process of the planning a suitable transport routes and the results are for information only. An example of the application of the iTRANSRISK integrated approach is demonstrated considering an explosion scenario following a propane tanker leak (18 t) in a forested area, with moderately susceptible soils and no surface water or groundwater affected

    Signed zeros of Gaussian vector fields-density, correlation functions and curvature

    Full text link
    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann-Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.Comment: 14 pages, 1 figure, uses iopart.cls, improved presentation, to appear in J. Phys.

    Dynamic Scaling of Width Distribution in Edwards--Wilkinson Type Models of Interface Dynamics

    Full text link
    Edwards--Wilkinson type models are studied in 1+1 dimensions and the time-dependent distribution, P_L(w^2,t), of the square of the width of an interface, w^2, is calculated for systems of size L. We find that, using a flat interface as an initial condition, P_L(w^2,t) can be calculated exactly and it obeys scaling in the form _\infty P_L(w^2,t) = Phi(w^2 / _\infty, t/L^2) where _\infty is the stationary value of w^2. For more complicated initial states, scaling is observed only in the large- time limit and the scaling function depends on the initial amplitude of the longest wavelength mode. The short-time limit is also interesting since P_L(w^2,t) is found to closely approximate the log-normal distribution. These results are confirmed by Monte Carlo simulations on a `roof-top' model of surface evolution.Comment: 5 pages, latex, 3 ps figures in a separate files, submitted to Phys.Rev.

    On the Nodal Count Statistics for Separable Systems in any Dimension

    Full text link
    We consider the statistics of the number of nodal domains aka nodal counts for eigenfunctions of separable wave equations in arbitrary dimension. We give an explicit expression for the limiting distribution of normalised nodal counts and analyse some of its universal properties. Our results are illustrated by detailed discussion of simple examples and numerical nodal count distributions.Comment: 21 pages, 4 figure

    The distribution of extremal points of Gaussian scalar fields

    Full text link
    We consider the signed density of the extremal points of (two-dimensional) scalar fields with a Gaussian distribution. We assign a positive unit charge to the maxima and minima of the function and a negative one to its saddles. At first, we compute the average density for a field in half-space with Dirichlet boundary conditions. Then we calculate the charge-charge correlation function (without boundary). We apply the general results to random waves and random surfaces. Furthermore, we find a generating functional for the two-point function. Its Legendre transform is the integral over the scalar curvature of a 4-dimensional Riemannian manifold.Comment: 22 pages, 8 figures, corrected published versio
    • …
    corecore