18 research outputs found

    Bioaccumulation and ecotoxicity of carbon nanotubes

    Get PDF
    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships

    Hepatic Oxidative Stress, Genotoxicity and Vascular Dysfunction in Lean or Obese Zucker Rats

    Get PDF
    Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24 and 37 weeks of age. Obese Zucker rats had more hepatic fat accumulation than their lean counterparts. Nevertheless, the obese rats had unaltered age-related level of hepatic oxidatively damaged DNA in terms of formamidopyrimidine DNA glycosylase (FPG) or human oxoguanine DNA glycosylase (hOGG1) sensitive sites as measured by the comet assay. There were decreasing levels of oxidatively damaged DNA with age in the liver of lean rats, which occurred concurrently with increased expression of Ogg1. The 37 week old lean rats also had higher expression level of Hmox1 and elevated levels of DNA strand breaks in the liver. Still, both strain of rats had increased protein level of HMOX-1 in the liver at 37 weeks. The external and lumen diameters of mesenteric arteries increased with age in obese Zucker rats with no change in media cross-sectional area, indicating outward re-modelling without hypertrophy of the vascular wall. There was increased maximal response to acetylcholine-mediated endothelium-dependent vasodilatation in both strains of rats. Collectively, the results indicate that obese Zucker rats only displayed a modest mesenteric vascular dysfunction, with no increase in hepatic oxidative stress-generated DNA damage despite substantial hepatic steatosis

    Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: Effects on liver DNA strand breaks in dams and offspring

    Get PDF
    Effects of maternal pulmonary exposure to carbon black (Printex 90) on gestation, lactation and DNA strand breaks were evaluated. Time-mated C57BL/6BomTac mice were exposed by inhalation to 42 mg/m(3) Printex 90 for 1 h/day on gestation days (GD) 8-18, or by four intratracheal instillations on GD 7, 10, 15 and 18, with total doses of 11, 54 and 268 (μg/animal. Dams were monitored until weaning and some offspring until adolescence. Inflammation was assessed in maternal bronchoalveolar lavage (BAL) 3-5 days after exposure, and at weaning. Levels of DNA strand breaks were assessed in maternal BAL cells and liver, and in offspring liver. Persistent lung inflammation was observed in exposed mothers. Inhalation exposure induced more DNA strand breaks in the liver of mothers and their offspring, whereas intratracheal instillation did not. Neither inhalation nor instillation affected gestation and lactation. Maternal inhalation exposure to Printex 90-induced liver DNA damage in the mothers and the in utero exposed offspring

    Oxidatively damaged DNA in animals exposed to particles

    No full text
    corecore