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Abstract

A rapid increase in utility of engineered nanomaterials, including carbon nanotubes (CNTs), has raised a concern
over their safety. Based on recent evidence from animal studies, pulmonary exposure of CNTs may lead to nanoparticle
accumulation in the deep lung without effective clearance which could interact with local lung cells for a long period
of time. Physicochemical similarities of CNTs to asbestos fibers may contribute to their asbestos-like carcinogenic
potential after long-term exposure, which has not been well addressed. More studies are needed to identify and predict
the carcinogenic potential and mechanisms for promoting their safe use. Our previous study reported a long-term
in vitro exposure model for CNT carcinogenicity and showed that 6-month sub-chronic exposure of single-walled
carbon nanotubes (SWCNT) causes malignant transformation of human lung epithelial cells. In addition, the transformed
cells induced tumor formation in mice and exhibited an apoptosis resistant phenotype, a key characteristic of cancer cells.
Although the potential role of p53 in the transformation process was identified, the underlying mechanisms
of oncogenesis remain largely undefined. Here, we further examined the gene expression profile by using
genome microarrays to profile molecular mechanisms of SWCNT oncogenesis. Based on differentially expressed
genes, possible mechanisms of SWCNT-associated apoptosis resistance and oncogenesis were identified,
which included activation of pAkt/p53/Bcl-2 signaling axis, increased gene expression of Ras family for cell
cycle control, Dsh-mediated Notch 1, and downregulation of apoptotic genes BAX and Noxa. Activated
immune responses were among the major changes of biological function. Our findings shed light on
potential molecular mechanisms and signaling pathways involved in SWCNT oncogenic potential.
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Background
Carbon nanotubes (CNT) are among the most widely
used nanomaterials for various industrial and biomedical
applications [1-3]. Their unique properties of high ten-
sile strength, flexibility, thermal and electrical conductiv-
ity, and their light weight have contributed to their
widespread use. However, their rapid growth in utility
has raised a major concern about their safety, especially
on human health and environment. CNT share several
properties with asbestos fibers such as high aspect ratio,
durability, biopersistence, and mode of exposure (e.g.,
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inhalation). Because asbestos fibers are classified as a
Group I human carcinogen by the International Agency
of Research in Cancer [4], there is a concern about the
potential carcinogenicity of CNT [2]. Exposure to asbes-
tos has been shown to cause various lung diseases
including lung cancer and mesothelioma [5]. Thus, there
is a clear need for carcinogenicity studies of CNT to
develop control and prevention strategies [6].
Recent studies have shown that both single-walled

(SW) and multi-walled (MW) CNT deposit in the deep
lung tissue of mice with low clearance after pulmonary
administration [7-9]. Occupationally relevant in vivo
exposures (10 to 80 μg/mouse) and pulmonary fibroblast
in vitro exposure studies, using in vivo dose equivalents
(0.02 to 0.2 μg/cm2), resulted in dose-dependent transi-
ent pulmonary inflammation followed by fibroblast cell
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proliferation, alveolar wall thickening, and collagen I
production culminating in persistent pulmonary fibrosis
[9,10]. Several in vitro and in vivo studies have suggested
the potential carcinogenicity of CNT [11-13]. The pos-
sible carcinogenic mechanisms include DNA damage
[14-16], mitotic disruption [12], impaired apoptosis, and
activation of oncogenic signaling events, which recapitu-
late asbestos-induced lung cancer and mesothelioma
[17-19]. It was suggested that nanotube bundles are
similar in size to microtubules that form the mitotic
spindle and may be incorporated into the mitotic spindle
apparatus, resulting in multipolar mitosis and aneu-
ploidy [20] which were observed in asbestos-treated cells
[15]. Furthermore, CNT exposure induced asbestos-like
granulomas in mice in a short-term abdominal instilla-
tion study [18].
Multiple genes may be involved in single-walled car-

bon nanotubes (SWCNT) pathogenesis. For examples,
p38 MAPK was reported to regulate SWCNT-induced
fibrogenic and angiogenic responses [21]. Other short-
term exposure studies report increased NF-kβ, TNFα,
NRLP3, iNOS, p53, and TGFβ activity all culminating in
lung inflammation and the onset of pulmonary intersti-
tial fibrosis [22,23]. Long-term in vitro and in vivo
exposure studies found that SWCNT and MWCNT
exposure to lung tissues resulted in KRAS activation,
enhanced micronuclei and nuclear protrusions, mitosis
disruption, mutated p16, cMyc proto-oncogene signal-
ing, and enhanced metalloproteinase remodeling of
the extracellular matrix [9,24-27], which all indicate
tumorigenesis potential following CNT exposure. Re-
cent transcriptomic and sequencing studies suggest
that long-term CNT exposure results in similar signal-
ing compared to other biopersistent fibers (i.e., asbes-
tos) but also display unique signaling pathways [27-30]
raising the possibility of a distinct CNT pathogenesis
paradigm [31]. Although a majority of these pro-
inflammation and pro-fibrotic genes have known roles
in cancer, a consensus on those key molecules and sig-
naling pathways that potentially drive and contribute
to CNT-associated carcinogenesis remain elusive.
Our recent studies showed that low-dose (0.02 μg/cm2)

SWCNT exposure caused malignant transformation and
tumorigenesis of human lung bronchial epithelial cells
[13]. We also found that phosphorylation at various
positions on p53 in these malignant cells significantly
decreased after sub-chronic SWCNT exposure [13]. These
phosphorylation sites are crucial for stabilization and acti-
vation of p53-dependent functions of tumor suppression,
DNA damage repair, and apoptosis resistance [32-35].
At present, the upstream and downstream signal
transduction pathways associated with altered p53
status contributing to a SWCNT-induced epithelial
tumorigenic phenotype are unknown.
Since carcinogenesis is a long-term, multi-step process
and involves multiple genes, it is of critical importance
to study the chronic exposure and genome-wide expres-
sion changes to define the underlying molecular mecha-
nisms of carcinogenesis, which is largely unknown. To
accomplish this goal, we have developed a sub-chronic
exposure model in which human lung bronchial epithe-
lial cells, the primary target of CNT inhalation exposure,
were continuously exposed to low-dose SWCNT in cul-
ture over a long period (6 months) [13]. Because isolated
primary lung cells do not survive in long-term culture,
we employed an immortalized human lung epithelial
BEAS-2B cell line which is non-tumorigenic and
exhibits similar cellular responses [7,20,36]. The long-
term SWCNT-exposed BEAS-2B (B-SWCNT) cells
were evaluated, for the first time, for genome-wide ex-
pression profiling and functional analysis compared to
unexposed, passage-matched control cells. Our study
revealed multiple genes and signaling networks that
are affected by SWCNT-induced oncogenic transform-
ation which might serve as potential SWCNT-specific
exposure or disease markers. This in vitro approach
also supports prudent adoption of exposure control
strategies protection of workers, consumers, and the
environment.
Methods
Preparation of single-walled carbon nanotubes
SWCNT (CNI, Houston, TX, USA) were produced by
the high-pressure CO disproportionation (HiPco) tech-
nique, employing CO in a continuous-flow gas phase as
the carbon feedstock and Fe(CO)5 as the iron-containing
catalyst precursor and used in our previous study [13].
Briefly, the SWCNT were purified by acid treatment to
remove metal contaminates. Elemental analysis of the
supplied SWCNT showed that the SWCNT were 99%
elemental carbon and 0.23% iron. The specific surface
area measured at −196°C by the nitrogen absorption-
desorption technique (Brunauer-Emmet-Teller method)
was 400 to 1,000 m2/g. The diameter and length distri-
bution of the SWCNT measured by field emission scan-
ning electron microscopy which were 0.8 to 1.2 nm and
0.1 to 1 μm, respectively. SWCNT were dispersed by
acetone/sonication method as previously described [10].
Briefly, SWCNT were treated with acetone and placed
in an ultrasonic bath for 24 h. The dispersed CNT were
then filtered from the solution using a 20-μm nylon
mesh screen followed by a 0.2-μm polytetrafluoroethyl-
ene filter. After filter collection, the dispersed CNT were
washed thoroughly with distilled water and suspended in
phosphate-buffered saline (PBS) with 2- to 3-min sonic-
ation (Sonic Vibra Cell Sonicator, Sonic & Material Inc,
Newtown, CT, USA).
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In vitro treatment and cell sample preparation for
microarrays
Microarray sample collection and analyses were per-
formed on unexposed and SWCNT-exposed cells from
our previous study [13]. Briefly, human lung bronchial
epithelial BEAS-2B cells were continuously exposed for
6 months to a sub-cytotoxic concentration (0.02 μg/cm2;
equivalent to 0.1 μg/ml) of dispersed SWCNT or PBS
(non-treatment control) in a six-well culture plate in
triplicate. Each replicate was exposed and independently
assayed throughout the study. This relatively low con-
centration was chosen due to its relevance to in vivo
SWCNT exposure dose of 10 μg/mouse previously re-
ported [8,37,38]. Repeated, long-term dosing of particu-
late in in vitro systems may result in accumulation of
particle burden over time in the assay system. To reduce
and safeguard against potential SWCNT accumulation
over time, every 3 to 4 days, the exposure media was
aspirated and the cells were triplicate washed with PBS
to remove suspended and unbound SWCNT. Cells were
then resupplied with new exposure media containing
SWCNT. The cells were passaged weekly at pre-
confluent densities using a solution containing 0.05%
w/v trypsin and 0.5 mM EDTA (Invitrogen, Carlsbad,
CA, USA). Greater than 50% of cells were removed
during passaging which resulted in a relatively small
proportion of intracellular SWCNT remaining in the
system. Parallel cell cultures grown in the same media
without SWCNT provided passage-matched control.
Following the 6-month exposure, SWCNT-treated
(B-SWCNT) and control (B-Control) cells were evaluated
for genome-wide gene expression. Three B-SWCNT cell
biological replicates showing similar phenotypic behavior
and p53 expression patterns [13] were pooled and ana-
lyzed as one. Additional filters such as increasing the fold
change to >2 will limit this disadvantage. Since the object-
ive of this study was to explore the candidate genes in-
volved in the carcinogenic process for further studies, this
study is considered a preliminary step.
RNA sample preparation and hybridization were per-

formed as previously described [39]. Briefly, total RNA
was harvested and isolated using TRIzol (Invitrogen)
according to manufacturer's instructions. Isolated RNA
in DEPC-treated water was then immediately frozen
at −80°C for 24 h and shipped on dry ice to ArrayStar
(Rockville, MD, USA) for mRNA processing, microarray
hybridization, and probe expression normalization.

DNA microarray and data analysis
Whole genome oligo microarrays (#014850, Agilent Tech-
nology, Santa Clara, CA, USA) were used. Each array
represents more than 41,000 unique human genes and
transcripts sourced from RefSeq, Goldenpath Ensembl Uni-
gene Human Genome (Build 33) and GenBank databases.
Fluorescent RNA targets were prepared using Agilent
Quick Amp Labeling Kit. Microarray hybridization
was performed at 65°C for 17 h in Agilent's SureHyb
hybridization chambers. After washing in an ozone-
free environment, the slides were scanned using the
Agilent DNA microarray scanner (model G2505B).
Raw data were extracted using Agilent Feature Extrac-

tion Software (Santa Clara, CA, USA). Expression raw
data from passage control cells were used for other ex-
posure studies. The resulting text files were imported
into the Partek Genomic Suite (PGS; St. Louis, MO,
USA) for preprocessing, normalization, and statistical
analysis. Briefly, normalization was performed using
the Agilent FE one-color scenario (mainly median
normalization). Genes marked present or marginal in
all samples (‘All Targets Value’) were chosen for further
data analysis. Differentially expressed genes (DEGs)
were identified through fold-change screening and
t-test assuming unequal variances. Genes were differentially
expressed in B-SWCNT cells if they exhibited ≥ ±twofold
expression and p ≤ 0.05 compared to B-Control cells. Un-
supervised hierarchical clustering, gene ontology (GO) ana-
lysis, and pathway analysis were performed using the PGS
(St. Louis, MO). False discovery rate (FDR) assessment by
Benjimini Hochberg methods was applied for multiple
hypothesis testing purpose [40]. The filtered gene lists were
used for GO, pathways, and gene-gene interaction analyses
by using Ingenuity Pathway Analysis (IPA) software pack-
age (Redwood City, CA, USA).
Apoptosis protein array
To substantiate the genomic data and further identify
proteins contributing to the apoptotic resistance pheno-
type, B-SWCNT and B-Control cell protein lysates were
subjected to a human apoptosis protein expression array
(see Additional file 1: Table S1 for array layout) in
duplicate following manufacturer's instructions (R & D
Systems, Minneapolis, MN, USA). Briefly, 2 × 106 cells
from each treatment were seeded into a 25-cm2 flask in
particle-free growth medium and cultured for 24 h.
Next, plated cells were placed on ice, washed in ice cold
PBS, and lysed using the manufacturer's lysis buffer. Cell
lysate was collected via rubber policemen, rocked on ice
in suspension of 30 min, and spun at 12.5 K × g to
collect supernatant. Protein levels were determined via
BCA absorbance method on a spectrophotometer at
562 nm. Five hundred micrograms of protein was incu-
bated with each protein array overnight at 4°C. Each
array was triplicate washed in buffer, incubated with
detection antibody for 1 h, washed again, and incubated
with streptavidin-HRP antibody for 30 min. Protein
expression was captured using HRP chemiluminescence
on X-ray film.



Figure 1 Hierarchical clustering of SWCNT-exposed and
passage control cell gene expression following 6 months of
continuous treatment. The hierarchical clustering was based
on differentially expressed genes of SWCNT vs. control comparison
using p < 0.05 and fold changes >2 criteria. Color indicates
log2-transformed normalized intensities with red and blue
indicating over- and underexpression, respectively.
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Western blot
Bcl-2, pAkt, and Akt protein expression was determined
using previously described Western blot methods [10].
Briefly, B-SWCNT and B-Control cells were seeded
(5 × 105 cells/well) and cultured in six-well plates for
24 h in particle-free medium or re-exposed to dispersed
SWCNT (1 to 50 μg/ml or 0.1 to 5.2 μg/cm2). Cells were
placed on ice, washed with ice cold PBS buffer, and lysed
in protein buffer containing PMSF and protease in-
hibitor (Invitrogen). Cells were scraped, collected, and
rocked on ice for 30 min. Following centrifugation at
12.5 K × g, BCA assay was used to measure protein con-
centration in collected supernatants. Equal amounts of
protein were loaded into SDS PAGE gel, allowed to separ-
ate under current, and transferred to PVDF membranes
using semi-dry transfer apparatus (Fisher Scientific,
Pittsburgh, PA, USA). Membranes were incubated
with antibodies to either Bcl-2, pAkt, Akt (Cell Signal-
ing, Beverly, MA, USA), or B-actin (Sigma, St. Louis,
MO, USA) overnight at 4°C, washed thrice in Tris buf-
fer with 0.1% Tween, and incubated with anti-rabbit
or anti-mouse HRP antibody for 1 h (Santa Cruz, Inc,
Paso Robles, CA, USA). Protein levels were determined
using Millipore Immobilon HRP chemiluminescent sub-
strate (Millipore, Billerica, MA, USA) and exposure to X-
ray film. Western blot experiments were independently
performed three times. Quantification of Western blot
results were performed by using ImageJ [41,42]. Statistical
analyses were performed by using two group Student
t-tests after quantification and normalization to corre-
sponding controls.

Results and discussion
As we reported previously [13], transformed B-SWCNT
cells displayed aberrant p53 signaling, increased aggres-
siveness, apoptosis resistance, anchorage-independent
growth, angiogenicity, and in vivo xenograft tumor for-
mation compared to unexposed passage control cells.
These findings suggested the potential carcinogenicity of
B-SWCNT cells. The present transcriptomic analysis and
supporting data also indicate aberrant p53 signaling,
pAkt, Ras, Notch 1, and altered intrinsic mitochondrial
pathway signaling as potential mechanisms for SWCNT
carcinogenicity. This is consistent with the previous ob-
servations that most human cancers possess p53 tumor
suppressor gene inactivation resulting in dysfunctional
signaling contributing to tumorigenesis [43,44].

Gene expression profile by hierarchical clustering
Hierarchical clustering is a convenient way to visualize
the overall similarity among a large pool of samples.
The heatmap pattern also offers clues of possible co-
expression of genes. As shown in Figure 1, three con-
trol samples showed similar gene expression patterns
to cluster on the left (control, control-1, and control-2).
The B-SWCNT cells possessed a different expression
pattern on the right (SWCNT1_3). Here, three treated
samples were pooled and analyzed as one. This is a cost-
effective way to get the most likely candidate genes but
with the disadvantage of lowering the power and introdu-
cing more false positives. Since the objective of this study
was to explore the candidate genes involved in the
carcinogenic process for further studies, this study is
considered a preliminary step.

Gene ontology (GO) analysis for biological processes and
molecular functions
We analyzed top GO biological processes that are
affected by SWCNT exposure based on the list of DEGs
in B-SWCNT cells. Genes that are involved in immune
response were among the top biological processes
(Table 1). The top biological processes include the
responses to metal ion, antigen process and presenting,
regulation of phagocytosis, and vacuolar transport.
Apparently, lung epithelial cells may recognize SWCNT
as foreign which can alter the innate immune response
and influence the immune system as reported [27,45,46].



Table 1 Top biological processes changed after SWCNT treatment in transformed BEAS-2B cells compared to
unexposed cells

Biological process Enrichment score Enrichment p value Percent of genes in group
that are present

GO ID

Response to metal ion 8.6 0.000 37.5 10038

Antigen processing and presentation of peptide
antigen via MHC class I

8.5 0.000 8.6 2474

Regulation of circadian rhythm 7.9 0.000 30 42752

Antigen processing and presentation 7.4 0.001 10.9 19882

Positive regulation of microtubule depolymerization 7.3 0.001 66.7 31117

Regulation of phagocytosis 7.3 0.001 66.7 50764

Interspecies interaction between organisms 7 0.001 4.2 44419

Cellular chloride ion homeostasis 6.6 0.001 50 30644

Vacuolar transport 6.6 0.001 50 7034

Rhythmic process 6.4 0.002 18.8 48511

The biological process was based on SWCNT vs. control comparison, p < 0.05 and fold changes >2.
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In addition, the positive regulation of microtubule
depolymerization suggests that long-term SWCNT ex-
posure altered microtubule dynamics as previously re-
ported [12,47]. Similarly, genome wide changes of GO
molecular functions after SWCNT exposure included
genes responsible for immune response (i.e., MHC
class I) protein binding, post-transcriptional modifica-
tions (e.g., ubiquitin protease activity), and other en-
zymatic activities were among the top molecular
function changes (Table 2). Previous ‘omics’ studies
using long-term SWCNT exposure in vivo or in vitro
models reported similar findings that protein post-
translational modification constitutes a large GO signal
[27,28] and is likely to play a large role in disease develop-
ment and pathology.

Functional analysis of gene-gene interactions
Multiple gene-gene interactions are important for gene
functions and signal transduction. Therefore, gene-gene
Table 2 Top molecular functions changed after SWCNT treatm

Molecular function Enrichment score

MHC class I receptor activity 13.6

Flavonol 3-sulfotransferase activity 7.3

Aryl sulfotransferase activity 6.1

G-protein coupled photoreceptor activity 6.1

SH3 domain binding 6.1

Ubiquitin-specific protease activity 5.7

Photoreceptor activity 4.9

Protein binding 4.7

Ubiquitin thiolesterase activity 4.7

Cysteine-type endopeptidase activity 4.5

The molecular function was based on SWCNT vs. control comparison, p < 0.05 and f
interaction networks were plotted, scored, and ranked to
identify interactions potentially driving the observed B-
SWCNT malignant phenotype. Consistent with the ob-
served carcinogenic and apoptosis-resistant phenotype
of B-SWCNT cells [13], immune response, cell growth,
cell death/survival, and cell cycle control signaling net-
work were among the major functions identified in the
top-ranked networks in the B-SWCNT toxicogenomic
profile (Table 3). The functional involvement of individ-
ual genes or pathways in the carcinogenic process needs
to be further studied individually to determine their
actual involvement. Regardless, the pathways of Cellular
growth and proliferation, hematological system develop-
ment and function, humoral immune response, cell death
and survival, embryonic development, organismal
development, and cancer-related gene-gene interaction
networks possessed gene-gene interactions known to
participate in tumorigenic and CNT-induced neoplastic
signaling mechanisms [27].
ent in transformed BEAS-2B cells

Enrichment p value Percent of genes in group
that are present

GO ID

0.000 35.7 32393

0.001 66.7 47894

0.002 40.0 4062

0.002 40.0 8020

0.002 5.8 17124

0.003 9.8 4843

0.008 22.2 9881

0.009 1.9 5515

0.009 5.8 4221

0.011 6.9 4197

old changes >2.



Table 3 Top affected gene-gene interaction networks after sub-chronic SWCNT exposure in transformed BEAS-2B cells

Top diseases and functions Molecules in networka,b Score Focus
moleculesc

Cellular growth and proliferation, hematological
system development and function, humoral immune
response

ADAM15, ADRBK2, ATP5B, BCL10, BCR (complex), CHGA, CR2, CRHR1,
ERK1/2, FGR, GNAZ, HOPX, HSD11B2, HSPD1, HTATIP2, IgG1, Igg3, IgG2b,
IGLL1/IGLL5, Igm, insulin, ITCH, Jnk, MFGE8, NEU1, PAK2, PAX4, PPP1R1B,
Ras, RASGRP1, SH2B2, SH2D2A, TAS1R1, Vegf, ZNF24

35 25

Connective tissue disorders, inflammatory disease,
skeletal and muscular disorders

C1R, CD33, CD59, CDON, G6PD, HLA-A, HLA-B, HLA-C, HLA-E, Ifnar, IgG,
IKK (complex), immunoglobulin, interferon alpha, KIR, KRT31, MYO1E,
NFAT5, NFkB (complex), P38 MAPK, PI3K (family), PIM1, Pkc(s), RHOB,
RNF34, RTKN, SCARB1, SIRPA, SLC6A6, Tap, TAPBP, TNFSF10, TRAF3IP2,
USP11, USP18

33 24

Cell death and survival, embryonic development,
organismal development

ADAM17, AFF4, AKT2, Akt, AMPK, Ap1, BHLHE40, CD68, CELF1, CSNK1E,
CSNK1G2, Cyclin A, DVL1, estrogen receptor, F actin, FMR1, GSK3B,
HMGB3, HMGN5, Hsp70, IGFBP2, LCP1, LDL, MGLL, MUC4, OSGIN1, PDGF
BB, PI3K (complex), PMAIP1, Ppp2c, PURA, SF3B3, STRN, USP6, USP33

33 24

Cellular compromise, skeletal and muscular system
development and function, post-translational
modification

ARHGEF9, ATP13A2, CD3, Cg, Creb, CTSB, DUSP9, ERK, FBN1, FGF3, FSHR,
GSTM4, Hdac, Histone h3, Histone h4, HSD17B1, IFI44, IFI44L, IgG2a,
KDM3A, Lh, MCOLN1, MT1F, MT1X, NDRG1, NDRG4, NES, NPNT, ORAI1,
OXT, PGK1, SOX12, STAT5a/b, STK17A, TCR

33 24

Cell morphology, cellular assembly and organization,
cellular development

ACBD7, ADAM22, ANK1, AR, AS3MT, ATP5S, ATP6V0E2, ATP8B1,
CACNA1E, CDC6, CHD8, DLG4, FARP1, GLUL, GPR182, GSTM1, HILPDA,
HIST1H1A, IGF1R, KCNA4, KCNAB2, MCM8, NIPSNAP1, NUPR1, PPT2,
RAB18, RCN2, SIPA1L1, SOX11, ST6GALNAC6, SYNGAP1, TEX2, TMEM30A,
WNK1, ZSCAN16

21 18

Respiratory system development and function, tissue
morphology, cell cycle

26 s Proteasome, ACTC1, ACTN1, ACTR2, ACTR3, BNIP3L, CAP2, CARD10,
CKAP2, EBAG9, ELMOD3, ENC1, FAM89B, FSH, GEM, IGLL1/IGLL5, ING2,
JMJD6, MED26, MT1L, NOL3, NR3C1, PRPH, PSMB1, RAB11A, RDM1, RNA
polymerase II, SCAF8, SERTAD2, SFTPC, SIAH2, SMARCC1, TFDP2,
TUBA4A, USP13

16 15

Cancer, gastrointestinal disease, hepatic system
disease

ACOT11, AHCY, ANXA7, ARL6IP1, ARNT, ASS1, AXIN1, AXIN2, BCLAF1,
CAMLG, CCDC80, CYP1A1, EPHX1, FAM120A, FBXW7, HIST1H1C, IGFBP2,
KAT5, KITLG, KREMEN2, MED13L, MT1H, N-cor, NCOR2, NQO1, PIAS2,
PSMF1, PTGDS, PTP4A3, RBBP4, SERPINB6, SIDT2, STOX1, TCF7L2, TP53

16 15

Cell morphology, cell-to-cell signaling and interaction,
nervous system development and function

AIG1, ALDH3B1, C11orf30, CABYR, CACNA2D1, CHMP4B, COX10, CYFIP2,
DGKZ, DMD, DNAJB6, DTNB, DYRK1A, HDAC4, HYOU1, INS, LEPR,
Map4k4, MARK3, OPN4, Pdx1, PFKM, PPFIA1, proinsulin, SNCA, SNTB2,
SPARC, SPOP, TNRC6B, TRIM44, TUBB4A, VEGFA, VGF, YWHAG, YWHAH

16 15

DNA replication, recombination, and repair, cellular
compromise, cell death and survival

ATP6V0E1, BAG1, BAX, BGN, BRCA1, BRCA2, CCND1, CEL, CKB, DDX5,
DNAJA1, DPYSL3, FANCD2, GATA1, GFI1B, GSK3A, H3F3A/H3F3B, Hbb-b2,
HSPA4, HSPD1, LATS1, LINC00467, MAPT, NGFR, NME4, OPA1, ROCK2,
SFN, SPOCK2, STIP1, TLE1, UBE2N, USP11, ZFPM1, ZNF324

15 14

Lipid metabolism, molecular transport, small molecule
biochemistry

AP1M2, APOA1, APOC1, ARCN1, CBS, CCL1, CCL22, CETP, CLIC4, COG3,
COPG1, COPZ1, CXCL5, ERN1, EYA4, GSTA1, HLA-J, HYOU1, IFNB1, LCAT,
MGLL, NPEPPS, Pdx1, PEX6, PHLDB2, PPARG, PTGES2, RGS14, RNASE1,
TBXAS1, TMEM173, TNF, TPM2, Trim30a/Trim30d, XBP1

15 14

aThe network was based on SWCNT vs. control comparison, p < 0.05 and fold changes >2.
bCapitalized names indicate genes while lower case names indicate complexes.
cThe number of differentially expressed genes in each network are reported.
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Aberrant p53 signaling
Our initial study reported B-SWCNT malignant trans-
formed cells possessing an apoptotic resistant phenotype
due in part to aberrant p53 signaling [13]. Apoptosis
plays an essential role in the removal of mutated or
transformed cells and its disruption contributes to ab-
normal cell growth and malignancy [48,49]. To expand
on this finding, we first examined p53 (TP53) and p53-
associated protein mRNA expression in B-SWCNT com-
pared to B-Control cells. Moderate decreased expression
of TP53 mRNA was observed, but no statistical
significance was found (Table 4). Although 13 other
p53-associated transcripts showed no statistical differ-
ence, three transcripts experienced increased or de-
creased expression (>twofold) which included TP53I3,
TP53INP1, and TP53INP2. This data suggested a moder-
ate alteration of TP53-related signaling potentially due
to post-transcriptional modifications. Overexpressed
TP53I3, an oxidoreductase, is typically observed as a re-
sponse to reactive oxidative species (ROS) stress which
has been shown to occur in B-SWCNT cells [10,50].
More interestingly, decreased TP53INP1 and TP53INP2



Table 4 mRNA expressions of TP53 and related genes in SWCNT-transformed BEAS-2B cells

Probe ID Gene Description p value Fold

A_23_P26810 TP53 Homo sapiens tumor protein p53 (Li-Fraumeni syndrome) 0.66 −1.48

A_24_P274842 TP53AP1 Homo sapiens mRNA for P53TG1-B, complete cds. 0.75 1.26

A_23_P145895 TP53AP1 Homo sapiens mRNA for P53TG1-C, complete cds. 0.94 1.07

A_23_P88703 TP53BP1 Homo sapiens tumor protein p53 binding protein, 1 0.70 −1.21

A_23_P12526 TP53BP2 Homo sapiens tumor protein p53 binding protein, 2, transcript variant 2 0.17 −1.50

A_23_P150281 TP53I11 Homo sapiens tumor protein p53 inducible protein 11 0.82 −1.75

A_24_P185207 TP53I13 Homo sapiens tumor protein p53 inducible protein 13 0.55 1.61

A_24_P185205 TP53I13 Homo sapiens tumor protein p53 inducible protein 13 0.68 1.44

A_23_P5392 TP53I3 Homo sapiens tumor protein p53 inducible protein 3, transcript variant 1 0.18 2.55

A_23_P168882 TP53INP1 Homo sapiens tumor protein p53 inducible nuclear protein 1 0.10 −4.86

A_24_P357465 TP53INP2 Homo sapiens tumor protein p53 inducible nuclear protein 2 0.53 −2.66

A_24_P245646 TP53RK Homo sapiens TP53 regulating kinase 0.60 −1.33

A_24_P227971 TP53TG3 Homo sapiens TP53TG3 protein 0.65 1.50

A_23_P49391 TP53TG3 Homo sapiens TP53TG3 protein 0.95 1.07
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expression suggests a decreased ability in B-SWCNT
cells to respond to cell stress. Both genes encode for
antioxidant proteins that respond to cell stress by posi-
tively regulating autophagy and directly phosphorylating
serine 46 on p53 protein which is known to increase
p53's apoptotic signaling ability [33]. BEAS-2B cells ex-
hibit increased autophagy in response to ROS stress, in-
cluding CNT and other inhalable xenobiotic exposure,
and dysregulation of autophagy may contribute to tumor
promotion potential [50,51]. Decreased expression of
these two transcripts suggests that B-SWCNT cells lost
two major cell protection mechanisms including a
major p53 pro-apoptotic signaling pathway and posi-
tive regulation of autophagy.
To identify pathways that potentially altered p53

signaling and fate, several canonical pathways with DEGs
with known p53 functions were plotted in IPA. Upregu-
lation of PTEN and lowered expression of AKT2 sug-
gested decreased Akt signaling upstream of MDM2
regulation of p53 (Figure 2). Also, decreased GSK3β
expression suggests release of β-catenin from APC com-
plex resulting in activation of Wnt signaling [52] and a
potential block to MDM2-mediated p53 degradation via
the proteosome.
To substantiate post-translational phosphorylation

of p53 and identify other proteins contributing to B-
SWCNT cell apoptotic resistance ability, we conducted
an apoptosis protein expression array. Figure 3 shows,
in addition to substantial decreased phosphorylation of
Ser46, a target of TP53INP1/2, Ser15 and Ser392, targets
of MDM2 and casein kinase II [13,33,53], which indicated
an unstable and dysfunctional p53 response in contribut-
ing to B-SWCNT malignant phenotype and enhanced
cancer signaling (Table 3, network 7). Other apoptotic-
associated proteins were found to alter expression. A sub-
stantial decrease in claspin expression indicated loss of
checkpoint-mediated ATR control of the cell cycle follow-
ing DNA damage. Overexpressed heat shock protein 60
(HSPD1) in B-SWCNT cells may contribute to cell prolif-
eration and apoptotic resistance in response to genotoxic
stress (Table 3, networks 1 and 9) by stabilizing, surviving,
and inhibiting p53 [54]. Moderate decreased TNFR1, the
major receptor for TNFα, indicated a reduced ability to
respond to pro-death TNFα signal which was previously
confirmed [13]. Conversely, a fivefold overexpressed Fas
receptor in the extrinsic apoptotic pathway suggested a
sensitization to apoptosis; however, it is possible that
downstream modulators of Caspase 8 activity (i.e., cFLIP)
may block this effect. Bcl-xl and Xiap, anti-apoptotic Bcl-2
family proteins, experienced a moderate decrease (two-
fold) in B-SWCNT compared to B-Control cells. Cells
undergoing tumorigenic transformation typically exhibit
changes in both pro-survival and death proteins [49].
Investigation of both extrinsic and intrinsic signaling path-
ways and their role in B-SWCNT apoptotic resistance is
currently under investigation in our group.
A recent demonstration of MWCNT-induced meso-

thelioma in p53 knockout mice [19,55] further supports
our finding and the role of p53 in CNT carcinogenesis.
A portion of this response may be due to a weakened
p53 in the BEAS-2B cell model since the SV40 large T
antigen immortalization procedure does affect p53 func-
tion [44]. Numerous studies acknowledge that p53 status
is a contributing factor to adverse effects following many
different types of inhalable and respirable particle expos-
ure to the lung [34,36,38,39,43]. In addition, other stud-
ies note that a CNT's physicochemical properties and
toxicokinetics in combination with p53 status of exposed



Figure 2 Akt2, PTEN, and GSK3B-mediated alteration of p53 and β-catenin function in SWCNT transformed BEAS-2B cells. Color indicates
upregulation (in red) and downregulation (in green). Protein assay (Figure 4) showed no significant level changes of Akt proteins and increased
phosphorylated Akt indicating that activated Akt may play a role in Gsk3β inhibition of B-catenin and MDM2-mediated p53.
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Figure 3 Apoptosis protein expression array comparison of B-SWCNT to B-Control cells. Apoptosis protein expression array comparison of
B-SWCNT to B-Control cells showed (A) altered Bcl-x, Xiap, Fas, TNFR1, claspin, and HSP60 expression in addition to three serine phosphorylation
sites on p53 shown in our previous report [13]. (B) Densitometry quantification of protein array. Representative data are shown from two independent
replicate experiments. See Additional file 1: Table S1 for array layout.
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tissue determine disease response [56,57]. Regardless,
SWCNT exposure did alter p53 signaling in these cells
compared to B-Control cells. These findings add to the
growing literature that pre-existing p53 condition along
with physicochemical properties of CNTs contribute to
disease outcome following respirable fiber exposure [19].
Since the above evidence suggested MDM2 activity

and AKT1 is a major signaling protein in most cells
compared to AKT2, we investigated whether B-SWCNT
cells compared to B-Control cells exhibited increased
AKT activation via phosphorylation, both in the presence
and absence of SWCNT. Western blot analysis indicated
increased ratio (1.7-fold, p < 0.05) of phosphorylated Akt
(pAkt) to Akt protein expression in 0 to 5 μg/ml SWCNT
in B-SWCNT compared to B-Control cells (Figure 4A,B).
Exposure to SWCNT caused a moderate 20% increase in
pAkt levels in B-Control cells at ≥10 μg/ml after 12 h
exposure while re-exposure to B-SWCNT exhibited a 27%
decrease at high dose levels (≥25 μg/ml). These results
show that unexposed lung epithelial cells experience
enhanced Akt activation following SWCNT exposure
[17]. In addition, it suggested that prolonged, low-dose
SWCNT exposure results in a dysregulated, constitutively
active pAKT and that Akt signaling may not be regulated
at the mRNA level. Akt activation, in turn, potentially acti-
vated MDM2, leading to enhanced p53 ubiquitination and
potential blockage of GSK3β (Figure 2). Thus, PI3K-AKT
signaling may be involved in SWCNT oncogenesis by
promoting cell survival (Table 3, network 3). Since pAkt is
known to suppress intrinsic mitochondrial pathway and
p53 blocks Bcl-2 expression, protein analysis showed that
Bcl-2 protein expression was significantly elevated 2.5-fold
in B-SWCNT compared to B-Control cells at 0 μg/ml
(p < 0.05; Figure 4A,C). At 12 h post-exposure to SWCNT,
neither cell type displayed a significant change in Bcl-2
expression. Following 24-h SWCNT exposure, B-Control
cells displayed a significant increase in Bcl-2 expression
at ≥5 μg/ml. Conversely, B-SWCNT displayed a significant
decrease in Bcl-2 expression at ≥10 μg/ml. These dose-
dependent Bcl-2 expression changes correlated with pAkt
levels in each cell type. This suggested that SWCNT ex-
posure to lung epithelial cells first results in Akt activation
at 12 h followed by increased Bcl-2 at 24 h, which poten-
tially occurs via either diminished p53 signaling to Noxa
[33] or blockage of BAD activity [48]. Persistent stimula-
tion of this pathway could result in an apoptosis resistance
phenotype via Bcl-2 overexpression. Interestingly, the
dose-dependent drop in pAkt expression mirrored the
drop in Bcl-2 expression (−28%) in re-exposed B-SWCNT
cells, which resulted in equivalent pAKt and Bcl-2 expres-
sion levels in both cell types at high SWCNT doses
(≥10 μg/ml). This suggests that pAkt expression suffi-
ciently regulates Bcl-2-associated anti-apoptotic signaling
in B-SWCNT cells [48] at low doses that typically occur in
occupational exposures. Under unrealistic high doses,
however, B-SWCNT cells may partially succumb to
pro-apoptotic intrinsic signaling and may rely on other
apoptotic resistance mechanisms (e.g., dysfunctional
extrinsic pathway). In summary, prolonged SWCNT
exposure coupled with p53 instability resulted in over-
expressed pAkt and Bcl-2 which potentially plays a
role in the apoptotic resistance and oncogenic devel-
opment of B-SWCNT cells.

Genes involved in the molecular mechanism of cancer
Among the various possible molecular mechanisms of
cancer, as shown in Additional file 2: Figure S1, both
increased (RASGRP, ARHGEF9, SHC, and RHOB) and
decreased gene expressions (RBPJK, JNK, DVL1, GSK3A,
GSK3β, PAK, AKT2, PMAIP1 [Noxa], BAX) were ob-
served in B-SWCNT cells. Based on overexpressed pAkt,
decreased stabilization of p53 via several serine dephos-
phorylations and increased Bcl-2 protein, it appears that
B-SWCNT cells gained apoptotic resistance in the in-
trinsic apoptotic pathway via the pAkt/MDM2/p53/Bcl-
2 signaling axis. With the decreased pro-apoptotic BAX
and PMAIP1 (Table 3, networks 3 and 9) expression
downstream of pAkt, and our elevated levels of Bcl-2
protein (Western blot data), we postulated this anti-
apoptotic signaling mechanism in the intrinsic apoptosis
pathway of B-SWCNT cells.
Several DEGs in other signaling pathways potentially

contributed to B-SWCNT malignant phenotype. In-
creased expression of RASGRP1 and RasGEF (ARH-
GEF9) may contribute to Ras-ERK signaling that
regulates cyclin expression and thus cell cycle progres-
sion (Table 3, network 1). Increased SHC and Rho
(RHOB) expression may also activate Cdc42, a key cell
cycle regulator, and contribute to PI3K/Akt activation.
It was reported that smoke-concentrated medium exposure
induced Cdc42 translocation in human bronchial epithelial
cells that may contribute to lung carcinogenesis [58].
Downregulation of Dsh (DVL1; Table 3, network 3) may
remove its blockage of Notch1, which could trigger notch
signaling-mediated tumorigenesis [59] and p53-dependent
carcinogenesis [60]. Decreased GSK3A and GSK3β expres-
sion (Table 3, networks 3 and 9) potentially enhanced β-
catenin tumor promotion and increased Cyclin D protein
levels leading to enhanced G1 phase transition and accel-
erated cell proliferation. It is believed that GSK-3β regu-
lates Wnt signaling pathway and its aberrant activation
often results in tumor formation [52]. In this study, down-
regulated GSK3β in APC complex (a prominent anti-lung
cancer mediator), at the transcript or post-transcriptional
level via pAkt activation, may lead to dysfunctional β-
catenin and thus potential elevatedWnt signaling (Figure 4).
Lastly, downregulation of JNK, a MAPK family kinase, does
not seem to support Fos/Jun-mediated transcription in



Figure 4 pAkt, Akt, and Bcl-2 expression via SDS PAGE in B-Control and B-SWNCT transformed cells. pAkt, Akt, and Bcl-2 expression via
SDS PAGE in B-Control and B-SWNCT transformed cells following 12 and 24 h re-exposure to dispersed SWCNT (1 to 50 μg/ml = 0.1 to 5.2 μg/cm2).
β-actin was used as an internal loading control. (A) Representative blots are shown from three independent experiments. (B) pAkt/Akt ratio
densitometry quantification. *indicates significant difference between the two cell types (p < 0.05). (C) Bcl-2 expression densitometry quantification.
† indicates significant difference between B-SWCNT and B-Control at each time point (p < 0.05). *and # indicate significant difference of both B-Control
and B-SWCNT cells, respectively, compared to its unexposed treatment group at 24 h (p < 0.05).
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SWCNT carcinogenic potential. However, decreased JNK
can result in decreased phosphorylation of p53 Ser15,
resulting in MDM2-mediated p53 degradation [61].

Conclusions
In conclusion, we observed that long-term exposure
in vitro (6 months) to SWCNT caused malignant trans-
formation of human lung epithelial cells as suggested
by our genome-wide expression data. Several genes in-
volved in the apoptosis, cell cycle control, and oncogenic
development were altered by the SWCNT treatment
with the immune response representing the most altered
biological process. The oncogenic phenotype of trans-
formed B-SWCNT cells [13] may be explained, among
other possible mechanisms, by active pAkt signaling,
destabilized p53, increased expression of Ras family genes,
Dsh-mediated Notch1, overexpressed Bcl-2 and downreg-
ulation of the anti-apoptotic genes BAX and PMAIP1. The
development of the sub-chronic in vitro exposure model
coupled with global transcriptome analysis described in
this study could aid in the investigation of the potential
mechanisms of CNT carcinogenesis, while the genome-
wide expression approach can provide new insights into
the genes involved in the carcinogenic process [40].

Additional files

Additional file 1: Table S1. Layout of apoptosis protein expression
array (R&D Systems).

Additional file 2: Figure S1. Differentially expressed genes in the
molecular mechanism of cancer pathway in SWCNT-transformed BEAS-2B
cells. Colors indicate under-(green) and over-expressed (in red) genes
compared to unexposed passage control cells. Values are fold changes
of SWCNT-treated vs. control, p ≤ 0.05. The double colors indicate both
increased and decreased genes within the same group (e.g., kinases).
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