11 research outputs found

    Diabetes by Air, Land, and Sea: Effect of Deployments on HbA1c and BMI

    Get PDF
    INTRODUCTION: Service members (SMs) in the United States (U.S.) Armed Forces have diabetes mellitus at a rate of 2-3%. Despite having a chronic medical condition, they have deployed to environments with limited medical support. Given the scarcity of data describing how they fare in these settings, we conducted a retrospective study analyzing the changes in glycated hemoglobin (HbA1c) and body mass index (BMI) before and after deployment. MATERIALS AND METHODS: SMs from the U.S. Army, Air Force, Navy, and Marine Corps with diabetes who deployed overseas were identified through the Military Health System (MHS) Management Analysis and Reporting Tool and the Defense Manpower Data Center. Laboratory and pharmaceutical data were obtained from the MHS Composite Health Care System and the Pharmacy Data Transaction Service, respectively. Paired t-tests were conducted to calculate changes in HbA1c and BMI before and after deployment. RESULTS: SMs with diabetes completed 11,325 deployments of greater than 90 days from 2005 to 2017. Of these, 474 (4.2%) SMs had both HbA1c and BMI measurements within 90 days prior to departure and within 90 days of return. Most (84.2%) required diabetes medications: metformin in 67.3%, sulfonylureas in 19.0%, dipeptidyl peptidase-4 inhibitors in 13.9%, and insulin in 5.5%. Most SMs deployed with an HbA1c \u3c 7.0% (67.1%), with a mean predeployment HbA1c of 6.8%. Twenty percent deployed with an HbA1c between 7.0 and 7.9%, 7.2% deployed with an HbA1c between 8.0 and 8.9%, and 5.7% deployed with an HbA1c of 9.0% or higher. In the overall population and within each military service, there was no significant change in HbA1c before and after deployment. However, those with predeployment HbA1c \u3c 7.0% experienced a rise in HbA1c from 6.2 to 6.5% (P \u3c 0.001), whereas those with predeployment HbA1c values ≥7.0% experienced a decline from 8.0 to 7.5% (P \u3c 0.001). Those who deployed between 91 and 135 days had a decline in HbA1c from 7.1 to 6.7% (P = 0.010), but no significant changes were demonstrated in those with longer deployment durations. BMI declined from 29.6 to 29.3 kg/m2 (P \u3c 0.001), with other significant changes seen among those in the Army, Navy, and deployment durations up to 315 days. CONCLUSIONS: Most SMs had an HbA1c \u3c 7.0%, suggesting that military providers appropriately selected well-managed SMs for deployment. HbA1c did not seem to deteriorate during deployment, but they also did not improve despite a reduction in BMI. Concerning trends included the deployment of some SMs with much higher HbA1c, utilization of medications with adverse safety profiles, and the lack of HbA1c and BMI evaluation proximal to deployment departures and returns. However, for SMs meeting adequate glycemic targets, we demonstrated that HbA1c remained stable, supporting the notion that some SMs may safely deploy with diabetes. Improvement in BMI may compensate for factors promoting hyperglycemia in a deployed setting, such as changes in diet and medication availability. Future research should analyze in a prospective fashion, where a more complete array of diabetes and readiness-related measures to comprehensively evaluate the safety of deploying SMs with diabetes

    Effect of Military Deployment on Diabetes Mellitus in Air Force Personnel

    Get PDF
    Introduction: Military deployments relocate service members to austere locations with limited medical capabilities, raising uncertainties whether members with diabetes can participate safely. Military regulations require a medical clearance for service members with diabetes prior to deployment, but there is a dearth of data that can guide the provider in this decision. To alleviate the lack of evidence in this area, we analyzed the change in glycated hemoglobin (HbA1c) and body mass index (BMI) before and after a deployment among active duty U.S. Air Force personnel who deployed with diabetes. Materials and Methods: A retrospective analysis was conducted using HbA1c and BMI values obtained within 3 mo before and within 3 mo after repatriation from a deployment of at least 90 d between January 1, 2004 through December 31, 2014. The study population consisted of 103 and 195 subjects who had an available pre- and post-deployment HbA1c and BMI values, respectively. Paired t-tests were conducted to determine significant differences in HbA1C and BMI values. Results: The majority (73.8%) of members had a HbA1c7%. BMI declined for the overall population (28.3 kg/m2 vs. 27.7 kg/m2, p \u3c 0.0001) and for most of the subgroups. Conclusion: Air Force service members who deployed with diabetes, including those with a HbA1c \u3e 7%, experienced a statistically significant improvement in HbA1c and BMI upon repatriation. A prospective study design in the future can better reconcile the effect of a military deployment on a more comprehensive array of diabetes parameters

    Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device

    Get PDF
    This study aimed to validate a wearable device’s walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson’s Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and − 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application. Trial registration: ISRCTN – 12246987
    corecore