6 research outputs found

    Optothermotronic effect as an ultrasensitive thermal sensing technology for solid-state electronics

    Get PDF
    The thermal excitation, regulation, and detection of charge carriers in solid-state electronics have attracted great attention toward high-performance sensing applications but still face major challenges. Manipulating thermal excitation and transport of charge carriers in nanoheterostructures, we report a giant temperature sensing effect in semiconductor nanofilms via optoelectronic coupling, termed optothermotronics. A gradient of charge carriers in the nanofilms under nonuniform light illumination is coupled with an electric tuning current to enhance the performance of the thermal sensing effect. As a proof of concept, we used silicon carbide (SiC) nanofilms that form nanoheterostructures on silicon (Si). The sensing performance based on the thermal excitation of charge carriers in SiC is enhanced by at least 100 times through photon excitation, with a giant temperature coefficient of resistance (TCR) of up to −50%/K. Our findings could be used to substantially enhance the thermal sensing performance of solid-state electronics beyond the present sensing technologies

    Optical and Electrical Characterizations of Nanoscale Robust 3C-SiC Membrane for UV Sensing Applications

    No full text
    This paper presents the fabrication and optical characterization of an ultrathin 3C-SiC membrane for UV light detection. SiC nanoscale film was grown on Si substrate and subsequently released to form a robust membrane with a high aspect ratio of about 5000. Transmission measurements were performed to determine the thickness of the film with a high accuracy of 98%. We also employed a simple and highly effective direct wirebonding technique to form electrical contacts to the SiC membrane. The considerable change in the photocurrent of the SiC membrane was observed under UV illumination, indicating the potential of using 3C-SiC membranes for UV detection

    Ultraviolet and Visible Photodetection Using 3C-SiC/Si Hetero-Epitaxial Junction

    No full text
    This paper demonstrates the prospect of using a 3C-SiC/Si heterostructure as an ultraviolet and visible photodetector. The heterojunction has been grown epitaxially on Si-substrate via a Low Pressure Chemical Vapor Deposition technique at 1000 °C. The detector shows a good diode characteristic with a rectification ratio of 1.03 × 103 and a reverse leakage current of 7.2 × 10−6 A at 2 V in dark conditions. The responsivity of the device is found to be 5.4 × 10−2 A/W and 3.18 × 10−2 A/W at a reverse bias of 2 V under visible (635 nm) and UV (375 nm) illumination, respectively. An energy band diagram is proposed to explain the photosensitivity of the heterostructure

    Promoting Women’s Participation in Cross-border Trade in South Asia

    No full text
    corecore