49 research outputs found

    Intumescent paints Patent

    Get PDF
    Nitroaniline sulfate, intumescent paint

    Phosphorus-containing bisimide resins

    Get PDF
    The production of fire-resistant resins particularly useful for making laminates with inorganic fibers such as graphite fibers is discussed. The resins are by (1) condensation of an ethylenically unsaturated cyclic anhydride with a bis(diaminophenyl) phosphine oxide, and (2) by addition polymerization of the bisimide so obtained. Up to about 50%, on a molar basis, of benzophenonetetracarboxylic acid anhydride can be substituted for some of the cyclic anhydride to alter the properties of the products. Graphite cloth laminates made with these resins show 800 C char yields greater than 70% by weight in nitrogen. Limiting oxygen indexes of more than 100% are determined for these resins

    Laminate comprising fibers embedded in cured amine terminated bis-imide

    Get PDF
    Amine terminated bisaspartimides are prepared by a Michael type reaction of an aromatic bismaleimide and an aromatic diamine in an aprotic solvent. These bisaspartimides are thermally polymerized to yield tough, resinous polymers crosslinked through -NH- groups. Such polymers are useful in applications requiring materials with resistance to change at elevated temperatures

    Maleimido substituted aromatic cyclotriphosphazenes

    Get PDF
    4-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g., hexakis amino or trisaminophenoxy-trisphenoxy-cyclo-triphosphazenes), selection of molar proportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics

    Transparent polymeric laminates

    Get PDF
    Laminate prepared from epoxy-boroxine and phenolphthalein polycarbonate has high mechanical strength at elevated temperature and is resistant to impact, fire, and high-energy thermal radiation. Polycarbonate is prepared by reaction of phenolphthalein with phosgene in presence of amine catalyst and immiscible organic solvent phase

    Amine terminated bisaspartimide polymer

    Get PDF
    Novel amine terminated bisaspartimides are prepared by a Michael-type reaction of an aromatic bismalteimide and an aromatic diamine in an aprotic solvent. These bisaspartimides are thermally polymerized to yield tough, resinous polymers cross-lined through -NH- groups. Such polymers are useful in applications requiring materials with resistance to change at elevated temperatures, e.g., as lightweight laminates with graphite cloth, molding material prepregs, adhesives and insulating material

    Elastomer-modified phosphorus-containing imide resins

    Get PDF
    Phosphine oxide-containing polyimide resins modified by elastomers, are disclosed which have improved mechanical properties. These products are particularly useful in the production of fiber or fabric-reinforced composites or laminates

    Phosphorus-containing imide resins

    Get PDF
    Bis- and tris-imides derived from tris (m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, and addition polymers of such imides, including a variant in which a mono-imide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride. Such monomers or their oligomes may be used to impregnate fibers and fabrics which when cured, are flame resistant. Also an improved method of producing tris (m-aminophenyl) phosphine oxides from the nitro analogues by reduction with hydrazine hydrate using palladized charcoal or Raney nickel as the catalyst is described

    Metal phthalocyanine intermediates for the preparation of polymers

    Get PDF
    Metal 4, 4', 4"",-tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A

    Metal phthalocyanine polymers

    Get PDF
    Metal 4, 4', 4", 4"'=tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A
    corecore