676 research outputs found
Structural predictions of biomolecular systems
In this short paper we summarize the current landscape in structural predictions of biomolecular systems and underlying physical principles. The target molecules of predictions are shortly introduced and a summary of current
methods for structural characterization is given. Basic principles and methods used in structural predictions are finally summarized
Exploring the role of cyclodextrins as a cholesterol scavenger: a molecular dynamics investigation of conformational changes and thermodynamics
This study presents a comprehensive analysis of the cholesterol binding mechanism and conformational changes in cyclodextrin (CD) carriers, namely βCD, 2HPβCD, and MβCD. The results revealed that the binding of cholesterol to CDs was spontaneous and thermodynamically favorable, with van der Waals interactions playing a dominant role, while Coulombic interactions have a negligible contribution. The solubility of cholesterol/βCD and cholesterol/MβCD complexes was lower compared to cholesterol/2HPβCD complex due to stronger vdW and Coulombic repulsion between water and CDs. Hydrogen bonding was found to have a minor role in the binding process. The investigation of mechanisms and kinetics of binding demonstrated that cholesterol permeates into the CD cavities completely. Replicas consideration indicated that while the binding to 2HPβCD occurred perpendicularly and solely through positioning cholesterol's oxygen toward the primary hydroxyl rim (PHR), the mechanism of cholesterol binding to βCD and MβCD could take place with the orientation of oxygen towards both rims. Functionalization resulted in decreased cavity polarity, increased constriction tendency, and altered solubility and configuration of the carrier. Upon cholesterol binding, the CDs expanded, increasing the cavity volume in cholesterol-containing systems. The effects of cholesterol on the relative shape anisotropy (κ 2) and asphericity parameter (b) in cyclodextrins were investigated. βCD exhibited a spherical structure regardless of cholesterol presence, while 2HPβCD and MβCD displayed more pronounced non-sphericity in the absence of cholesterol. Loading cholesterol transformed 2HPβCD and MβCD into more spherical shapes, with increased probabilities of higher κ 2. MβCD showed a higher maximum peak of κ 2 compared to 2HPβCD after cholesterol loading, while 2HPβCD maintained a significant maximum peak at 0.2 for b
CLP-based protein fragment assembly
The paper investigates a novel approach, based on Constraint Logic
Programming (CLP), to predict the 3D conformation of a protein via fragments
assembly. The fragments are extracted by a preprocessor-also developed for this
work- from a database of known protein structures that clusters and classifies
the fragments according to similarity and frequency. The problem of assembling
fragments into a complete conformation is mapped to a constraint solving
problem and solved using CLP. The constraint-based model uses a medium
discretization degree Ca-side chain centroid protein model that offers
efficiency and a good approximation for space filling. The approach adapts
existing energy models to the protein representation used and applies a large
neighboring search strategy. The results shows the feasibility and efficiency
of the method. The declarative nature of the solution allows to include future
extensions, e.g., different size fragments for better accuracy.Comment: special issue dedicated to ICLP 201
Chelating effect in short polymers for the design of bidentate binders of increased affinity and selectivity
The design of new strong and selective binders is a key step towards the development of new sensing devices and effective drugs. Both affinity and selectivity can be increased through chelation and here we theoretically explore the possibility of coupling two binders through a flexible linker. We prove the enhanced ability of double binders of keeping their target with a simple model where a polymer composed by hard spheres interacts with a spherical macromolecule, such as a protein, through two sticky spots. By Monte Carlo simulations and thermodynamic integration we show the chelating effect to hold for coupling polymers whose radius of gyration is comparable to size of the chelated particle. We show the binding free energy of flexible double binders to be higher than that of two single binders and to be maximized when the binding sites are at distances comparable to the mean free polymer end-to-end distance. The affinity of two coupled binders is therefore predicted to increase non linearly and in turn, by targeting two non-equivalent binding sites, this will lead to higher selectivity
Amino acid empirical contact energy definitions for fold recognition in the space of contact maps
BACKGROUND: Contradicting evidence has been presented in the literature concerning the effectiveness of empirical contact energies for fold recognition. Empirical contact energies are calculated on the basis of information available from selected protein structures, with respect to a defined reference state, according to the quasi-chemical approximation. Protein-solvent interactions are estimated from residue solvent accessibility. RESULTS: In the approach presented here, contact energies are derived from the potential of mean force theory, several definitions of contact are examined and their performance in fold recognition is evaluated on sets of decoy structures. The best definition of contact is tested, on a more realistic scenario, on all predictions including sidechains accepted in the CASP4 experiment. In 30 out of 35 cases the native structure is correctly recognized and best predictions are usually found among the 10 lowest energy predictions. CONCLUSION: The definition of contact based on van der Waals radii of alpha carbon and side chain heavy atoms is seen to perform better than other definitions involving only alpha carbons, only beta carbons, all heavy atoms or only backbone atoms. An important prerequisite for the applicability of the approach is that the protein structure under study should not exhibit anomalous solvent accessibility, compared to soluble proteins whose structure is deposited in the Protein Data Bank. The combined evaluation of a solvent accessibility parameter and contact energy allows for an effective gross screening of predictive models
Identification of DNA-binding protein target sequences by physical effective energy functions. Free energy analysis of lambda repressor-DNA complexes
Specific binding of proteins to DNA is one of the most common ways in which
gene expression is controlled. Although general rules for the DNA-protein
recognition can be derived, the ambiguous and complex nature of this mechanism
precludes a simple recognition code, therefore the prediction of DNA target
sequences is not straightforward. DNA-protein interactions can be studied using
computational methods which can complement the current experimental methods and
offer some advantages. In the present work we use physical effective potentials
to evaluate the DNA-protein binding affinities for the lambda repressor-DNA
complex for which structural and thermodynamic experimental data are available.
The effect of conformational sampling by Molecular Dynamics simulations on the
computed binding energy is assessed; results show that this effect is in
general negative and the reproducibility of the experimental values decreases
with the increase of simulation time considered. The free energy of binding for
non-specific complexes agrees with earlier theoretical suggestions. Moreover,
as a results of these analyses, we propose a protocol for the prediction of
DNA-binding target sequences. The possibility of searching regulatory elements
within the bacteriophage-lambda genome using this protocol is explored. Our
analysis shows good prediction capabilities, even in the absence of any
thermodynamic data and information on the naturally recognized sequence. This
study supports the conclusion that physics-based methods can offer a completely
complementary methodology to sequence-based methods for the identification of
DNA-binding protein target sequences.Comment: 35 pages,8 figure
Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations
Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications. \ua9 2018 Fogolari, Corazza and Esposito
Constraint Logic Programming approach to protein structure prediction
BACKGROUND: The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. RESULTS: Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. CONCLUSIONS: The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space
Biomolecular electrostatics with the linearized Poisson-Boltzmann equation
4openopenFOGOLARI F.; ZUCCATO P.; ESPOSITO G.; VIGLINO PFogolari, Federico; Zuccato, P.; Esposito, Gennaro; Viglino, Paol
- …