92 research outputs found

    How can weedy rice stand against abiotic stresses? a review

    Get PDF
    Weedy rice is one of the most common weeds in rice cultivation in many rice areas throughout the world and it is able to cause significant yield reductions. Weedy rice is characterized by a high biological diversity that permits different populations to be identified on the basis of their morphological and physiological traits. This variability contributes to its success in different environments and allows different abiotic stresses, which are intensified by climate change, to be faced. Taller plants, enhanced tillering, seed shattering and the presence of red pericarp, variable hull coloration and awn morphology, linked to a deeper seed dormancy, are some of the traits that help weedy rice to spread in changing environments. The higher phenotypic plasticity and genetic variability of weedy rice make it more able to cope with temperature variations, intermittent water availability, soil salinity, drought conditions and increased CO2 concentrations than cultivated rice. As these abiotic stresses will become more frequent in the future, weedy rice competitiveness may be higher, with a spread of infestations. Thus, the control of weedy rice should be based on an integration of different preventive and agronomic techniques, a sensible use of herbicides and the use of suitable rice varieties

    Effect of different water salinity levels on the germination of imazamox-resistant and sensitive weedy rice and cultivated rice

    Get PDF
    Weeds that have become resistant to herbicides may threaten rice production. Rice cultivation is mainly carried out in coastal and river delta areas that often suffer salinity problems. The aims of this study were to evaluate the effects of salinity upon germination and the root and shoot seedling growth of Italian weedy rice and cultivated rice (Oryza sativa), and to find a possible correlation between salinity and herbicide resistance. Seed germination tests were conducted in Petri dishes on four imazamox-sensitive and one resistant weedy rice populations and two rice varieties: Baldo (conventional) and CL80 (imidazolinone-resistant Clearfield® variety). Different salt concentrations were tested: 0, 50, 100, 150, 200, 250, 300, 350 and 400 mM NaCl. Germination percentage, germination speed, seedling root and shoot length were affected by increasing the salt concentration in all tested populations and varieties. The germination percentage was in general more affected in resistant weedy rice and CL80. In resistant weedy rice this was partially compensated by a faster germination up to 100 mM. In terms of seedling root and shoot length, CL80 and Baldo showed the highest tolerance to salt; resistant weedy rice was not able to produce seedling roots and shoots at concentrations > 300 mM

    Monitor, anticipate, respond, and learn: developing and interpreting a multilayer social network of resilience abilities

    Get PDF
    Resilient performance is influenced by social interactions of several types, which may be analysed as layers of interwoven networks. The combination of these layers gives rise to a “network of networks”, also known as a multilayer network. This study presents an approach to develop and interpret multilayer networks in light of resilience engineering. Layers correspond to the four abilities of resilient systems: monitor, anticipate, respond, and learn. The proposal is applied in a 34-bed intensive care unit. To map relationships between actors in each layer, a questionnaire was devised and answered by 133 staff members, including doctors, nurses, nurse technicians, and allied health professionals. Two multilayer networks were developed: one considering that actors are 100% available and reliable (work-as-imagined) and another considering suboptimal availability and reliability (work-as-done). The multilayer networks were analysed through actor-centred (Katz centrality, degree deviation, and neighbourhood centrality) and layer-centred metrics (inter-layer correlation, and assortativity correlation). Strengths and weaknesses of social interactions at the ICU are discussed based on the adopted metrics

    Defective catabolism of oxidized LDL by J774 murine macrophages.

    Get PDF
    In J774 murine macrophages, chemically oxidized LDL (OxLDL) and biologically oxidized LDL (BioOxLDL) have similar metabolic fates, characterized by a relatively poor degradation when compared with acetylated LDL (AcLDL), and a modest ability to activate acyl-CoA:cholesterol acyltransferase (ACAT) (850 and 754 pmol [14C]oleate/mg cell protein in OxLDL- and BioOxLDL-incubated cells, versus 425 and 7070 pmol [14C]cholesteryl oleate/mg cell protein in control and AcLDL-incubated cells) with a massive increase of cellular free cholesterol. Therefore, OxLDL were used to investigate the cellular processing of oxidatively modified LDL. Binding and fluorescence microscopy studies demonstrated that OxLDL are effectively bound and internalized by macrophages and accumulate in organelles with density properties similar to those of endo/lysosomes. Although the overall metabolism of OxLDL is modestly affected by 100 microM chloroquine, owing to the poor cellular degradation of the substrate, the drug can further depress OxLDL degradation, indicating that this process takes place in an acidic compartment. Failure to detect products of extensive degradation of OxLDL in the medium is due to their relative resistance to enzymatic hydrolysis, as demonstrated also by in vitro experiments with partially purified lysosomal enzymes, rather than to the intracellular accumulation of degradation products (degraded intracellular protein is, at most, 8.5% of total). This sluggish degradation process is not due to a cytotoxic effect since OxLDL do not affect the intracellular processing of other ligands like AcLDL or IgG. The accumulation of OxLDL-derived products within macrophages may elicit cellular responses, the relevance of which in the atherosclerotic process remains to be addressed
    • …
    corecore