49 research outputs found

    Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge

    Get PDF
    One of the expected effects of global change is increased variability in the abundance and distribution of living organisms, but information at the appropriate temporal and geographical scales is often lacking to observe these patterns. Here we use local knowledge as an alternative information source to study some emerging changes in Mediterranean fish diversity. A pilot study of thirty-two fishermen was conducted in 2009 from four Mediterranean locations along a south-north gradient. Semi-quantitative survey information on changes in species abundance was recorded by year and suggests that 59 fish species belonging to 35 families have experienced changes in their abundance. We distinguished species that increased from species that decreased or fluctuated. Multivariate analysis revealed significant differences between these three groups of species, as well as significant variation between the study locations. A trend for thermophilic taxa to increase was recorded at all the study locations. The Carangidae and the Sphyraenidae families typically were found to increase over time, while Scombridae and Clupeidae were generally identified as decreasing and Fistularidae and Scaridae appeared to fluctuate in abundance. Our initial findings strongly suggest the northward expansion of termophilic species whose occurrence in the northern Mediterranean has only been noted previously by occasional records in the scientific literature

    Oleic Acid Biosynthesis in Plasmodium falciparum: Characterization of the Stearoyl-CoA Desaturase and Investigation as a Potential Therapeutic Target

    Get PDF
    BACKGROUND:Plasmodium falciparum parasitization of erythrocytes causes a substantial increase in the levels of intracellular fatty acids, notably oleic acid. How parasites acquire this monounsaturated fatty acid has remained enigmatic. Here, we report on the biochemical and enzymatic characterization of stearoyl-CoA desaturase (SCD) in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS:Metabolic labeling experiments allowed us to demonstrate the production of oleic acid from stearic acid both in lysates of parasites incubated with [(14)C]-stearoyl-CoA and in parasite-infected erythrocytes labeled with [(14)C]-stearic acid. Optimal SCD activity was detected in schizonts, the stage of maximal membrane synthesis. This activity correlated with a late trophozoite stage-specific induction of PFE0555w transcripts. PFE0555w harbors a typical SCD signature. Similar to mammalian SCDs, this protein was found to be associated with the endoplasmic reticulum, as determined with PFE0555w-GFP tagged transgenic P. falciparum. Importantly, these parasites exhibited increased rates of stearic to oleic acid conversion, providing additional evidence that PFE0555w encodes the plasmodial SCD (PfSCD). These findings prompted us to assess the activity of sterculic acid analogues, known to be specific Delta9-desaturase inhibitors. Methyl sterculate inhibited the synthesis of oleic acid both with parasite lysates and infected erythrocytes, most likely by targeting PfSCD. This compound exhibited significant, rapid and irreversible antimalarial activity against asexual blood stages. This parasiticidal effect was antagonized by oleic acid. CONCLUSION/SIGNIFICANCE:Our study provides evidence that parasite-mediated fatty acid modification is important for blood-stage survival and provides a new strategy to develop a novel antimalarial therapeutic based on the inhibition of PfSCD

    Display of Cell Surface Sites for Fibronectin Assembly Is Modulated by Cell Adherence to 1F3 and C-Terminal Modules of Fibronectin

    Get PDF
    BACKGROUND: Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7)F3-(10)F3). Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7)F3-(10)F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS: To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7)F3-(10)F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2)F3-(14)F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1)F3 or the C-terminal modules to modules (2)F3-(14)F3 resulted in some activity, and addition of both (1)F3 and the C-terminal modules resulted in a construct, (1)F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1)F3-C V0, (1)F3-C V64, and (1)F3-C Delta(V(15)F3(10)F1) were all able to support fibronectin assembly, suggesting that (1)F3 through (11)F1 and/or (12)F1 were important for activity. Coatings in which the active parts of (1)F3-C were present in different proteins were much less active than intact (1)F3-C. CONCLUSIONS: These results suggest that (1)F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells

    Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (α5β1) antibodies

    No full text
    Fibroblasts have cell surface sites that mediate assembly of plasma and cellular fibronectin into the extracellular matrix. Cell adhesion to fibronectin can be mediated by the interaction of an integrin (α5β1) with the Arg-Gly-Asp-Ser (RGDS)-containing cell adhesion region of fibronectin. We have attempted to elucidate the role of the α5β1 fibronectin receptor in assembly of fibronectin in matrices. Rat monoclonal antibody mAb 13, which recognizes the integrin β1 subunit, completely blocked binding and matrix assembly of 125I-fibronectin as well as binding of the 125I-70-kD amino-terminal fragment of fibronectin (70 kD) to fibroblast cell layers. Fab fragments of the anti-β1 antibody were also inhibitory. Antibody mAb 16, which recognizes the integrin α5 subunit, partially blocked binding of 125I-fibronectin and 125I-70-kD. When cell layers were coincubated with fluoresceinated fibronectin and either anti-β1 or anti-α5, anti-β1 was a more effective inhibitor than anti-α5 of binding of labeled fibronectin to the cell layer. Inhibition of 125I-fibronectin binding by anti-β1 IgG occurred within 20 min. Inhibition of 125I-fibronectin binding by anti-β1 Fab fragments or IgG could not be overcome with increasing concentrations of fibronectin, suggesting that anti-β1 and exogenous fibronectin may not compete for the same binding site. No β1-containing integrin bound to immobilized 70 kD. These data indicate that the β1 subunit plays an important role in binding and assembly of exogenous fibronectin, perhaps by participation in the organization, regeneration, or cycling of the assembly site rather than by a direct interaction with fibronectin

    Autophagy Protects against Eosinophil Cytolysis and Release of DNA

    No full text
    The presence of eosinophils in the airway is associated with asthma severity and risk of exacerbations. Eosinophils deposit their damaging products in airway tissue, likely by degranulation and cytolysis. We previously showed that priming blood eosinophils with IL3 strongly increased their cytolysis on aggregated IgG. Conversely, IL5 priming did not result in significant eosinophil cytolysis in the same condition. Therefore, to identify critical events protecting eosinophils from cell cytolysis, we examined the differential intracellular events between IL5- and IL3-primed eosinophils interacting with IgG. We showed that both IL3 and IL5 priming increased the eosinophil adhesion to IgG, phosphorylation of p38, and production of reactive oxygen species (ROS), and decreased the phosphorylation of cofilin. However, autophagic flux as measured by the quantification of SQSTM1-p62 and lipidated-MAP1L3CB over time on IgG, with or without bafilomycin-A1, was higher in IL5-primed compared to IL3-primed eosinophils. In addition, treatment with bafilomycin-A1, an inhibitor of granule acidification and autophagolysosome formation, enhanced eosinophil cytolysis and DNA trap formation in IL5-primed eosinophils. Therefore, this study suggests that increased autophagy in eosinophils protects from cytolysis and the release of DNA, and thus limits the discharge of damaging intracellular eosinophilic contents
    corecore