37 research outputs found

    Spin-polarized Shapiro steps and spin-precession-assisted multiple Andreev reflection

    Get PDF
    We investigate the charge and spin transport of a voltage-biased superconducting point contact coupled to a nanomagnet. The magnetization of the nanomagnet is assumed to precess with the Larmor frequency, ωL\omega_L, due to ferromagnetic resonance. The interplay between the ac Josephson current and the magnetization dynamics leads to spin-polarized Shapiro steps at voltages ∣V∣=ℏωL/2en|V|=\hbar \omega_L/2en for n=1,2,...n=1,2,... and the subharmonic steps with n>1n>1 are a consequence of multiple Andreev reflection (MAR). Moreover, the spin-precession-assisted MAR generates quasiparticle scattering amplitudes that, due to interference, lead to current-voltage characteristics of the dc charge and spin currents with subharmonic gap structures displaying an even-odd effect.Comment: 5 pages, 4 figure

    Input-output description of microwave radiation in the dynamical Coulomb blockade

    Get PDF
    We study microwave radiation emitted by a small voltage-biased Josephson junction connected to a superconducting transmission line. An input-output formalism for the radiation field is established, using a perturbation expansion in the junction's critical current. Using output field operators solved up to the second order, we estimate the spectral density and the second-order coherence of the emitted field. For typical transmission line impedances and at frequencies below the main emission peak at the Josephson frequency, radiation occurs predominantly due to two-photon emission. This emission is characterized by a high degree of photon bunching if detected symmetrically around half of the Josephson frequency. Strong phase fluctuations in the transmission line make related nonclassical phase-dependent amplitude correlations short lived, and there is no steady-state two-mode squeezing. However, the radiation is shown to violate the classical Cauchy-Schwarz inequality of intensity cross-correlations, demonstrating the nonclassicality of the photon pair production in this region.Comment: 29 pages, 4 figure

    Spectral properties of superconductors with ferromagnetically ordered magnetic impurities

    Get PDF
    We present a comprehensive theoretical study of thermodynamic properties of superconductors with a dilute concentration of magnetic impurities, with focus on how the properties of the superconducting host change if the magnetic moments of the impurities order ferromagnetically. Scattering off the magnetic impurities leads to the formation of a band of Yu-Shiba-Rusinov states within the superconducting energy gap that drastically influences superconductivity. In the magnetically ordered system, the magnetization displays a sudden drop as function of impurity density or magnetic moment amplitude. The drop occurs as the spin-polarized impurity band crosses the Fermi level and is associated with a quantum phase transition first put forward by Sakurai for the single impurity case. Taking into account that the background magnetic field created by the ordered impurity moments enters as a Zeeman shift, we find that the superconducting phase transition changes from second order to first order for high enough impurity concentration.Comment: 16 pages, 13 figure

    Spontaneously broken time-reversal symmetry in high-temperature superconductors

    Full text link
    Conventional superconductors are strong diamagnets that through the Meissner effect expel magnetic fields. It would therefore be surprising if a superconducting ground state would support spontaneous magnetics fields. Such time-reversal symmetry broken states have been proposed for the high-temperature superconductors, but their identification remains experimentally controversial. Here we show a route to a low-temperature superconducting state with broken time-reversal symmetry that may accommodate currently conflicting experiments. This state is characterised by an unusual vortex pattern in the form of a necklace of fractional vortices around the perimeter of the material, where neighbouring vortices have opposite current circulation. This vortex pattern is a result of a spectral rearrangement of current carrying states near the surfaces

    Transport properties of vertical heterostructures under light irradiation

    Full text link
    Electronic and transport properties of bilayer heterostructure under light irradiation are of fundamental interest to improve functionality of optoelectronic devices. We theoretically study the modification of transport properties of bilayer graphene and bilayer heterostructures under a time-periodic external light field. The bulk electronic and transport properties are studied in a Landauer-type configuration by using the nonequilibrium Green's function formalism. To illustrate the behavior of the differential conductance of a bilayer contact under light illumination, we consider tight-binding models of bilayer graphene and graphene/hexagonal boron-nitride heterostructures. The non-adiabatic driving induces sidebands of the original band structure and opening of gaps in the quasienergy spectrum. In transport properties, the gap openings are manifested in a suppression of the differential conductance. In addition to suppression, an external light field induces an enhancement of the differential conductance if photoexcited electrons tunnel into or out of a Van~Hove singularity.Comment: 9 pages, 7 figure

    Nonclassical photon pair production in a voltage-biased Josephson junction

    Get PDF
    We investigate electromagnetic radiation emitted by a small voltage-biased Josephson junction connected to a superconducting transmission line. At frequencies below the well known emission peak at the Josephson frequency (2eV/h), extra radiation is triggered by quantum fluctuations in the electromagnetic environment. For weak tunneling couplings and typical ohmic transmission lines, the corresponding photon flux spectrum is symmetric around half the Josephson frequency, indicating that the photons are predominately created in pairs. By establishing an input-output formalism for the microwave field in the transmission line, we give further evidence for this nonclassical photon pair production, demonstrating that it violates the classical Cauchy-Schwarz inequality for two-mode flux cross correlations. In connection to recent experiments, we also consider a stepped transmission line, where resonances increase the signal-to-noise ratio.Comment: 5 pages, 2 figures. This version accepted in Physical Review Letter

    Spin-polarized currents and noise in NS junctions with Yu-Shiba-Rusinov impurities

    Get PDF
    Conventional superconductors disordered by magnetic impurities demonstrate physical properties drastically different from their pristine counterparts. In our previous work [Phys. Rev. B 92, 245430 (2015)] we explored spectral and thermodynamic properties of such systems for two extreme cases: completely random and ferromagnetically aligned impurity magnetic moments. Here we consider transport properties of these systems, and show that they have a potential to be used in superconducting spintronic devices. Each magnetic impurity contributes a Yu-Shiba-Rusinov (YSR) bound state to the spectrum, residing at sub-gap energies. Provided the YSR states form metallic bands, we demonstrate that the tunneling current carried by these states can be highly spin-polarized when the impurities are ferromagnetically ordered. The spin polarization can be switched by simply tuning the bias voltage. Moreover, even when the impurity spins are completely uncorrelated, one can still achieve almost 100% spin polarization of the current, if the tunnel interface is spin-active. We compute electric current and noise, varying parameters of the interface between tunneling and fully transparent regimes, and analyze the relative role of single-particle and Andreev reflection processes.Comment: 14 pages, 10 figure

    High-sensitivity plasmonic refractive index sensing using graphene

    Full text link
    We theoretically demonstrate a high-sensitivity, graphene-plasmon based refractive index sensor working in the mid-infrared at room temperature. The bulk figure of merit of our sensor reaches values above 1010, but the key aspect of our proposed plasmonic sensor is its surface sensitivity which we examine in detail. We have used realistic values regarding doping level and electron relaxation time, which is the limiting factor for the sensor performance. Our results show quantitatively the high performance of graphene-plasmon based refractive index sensors working in the mid-infrared.Comment: This is an author-created, un-copyedited version of an article accepted for publication/published in 2DMaterials. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/2053-1583/aa70f

    Optical signatures of nonlocal plasmons in graphene

    Get PDF
    We theoretically investigate under which conditions nonlocal plasmon response in monolayer graphene can be detected. To this purpose, we study optical scattering off graphene plasmon resonances coupled using a subwavelength dielectric grating. We compute the graphene conductivity using the Random Phase Approximation (RPA) obtaining a nonlocal conductivity and we calculate the optical scattering of the graphene-grating structure. We then compare this with the scattering amplitudes obtained if graphene is modeled by the local RPA conductivity commonly used in the literature. We find that the graphene plasmon wavelength calculated from the local model may deviate up to 20%20\% from the more accurate nonlocal model in the small-wavelength (large-qq) regime. We also find substantial differences in the scattering amplitudes obtained from the two models. However, these differences in response are pronounced only for small grating periods and low temperatures compared to the Fermi temperature.Comment: Accepted for publication in Physical Review B. 15 pages, 9 figure
    corecore