105 research outputs found

    Visual tracking with omnidirectional cameras: an efficient approach

    Full text link

    The value of the multidisciplinary team in metastatic renal cell carcinoma: paving the way for precision medicine in toxicities management

    Get PDF
    The new landscape of treatments for metastatic clear cell renal carcinoma (mRCC) is constantly expanding, but it is associated with the emergence of novel toxicities, adding to up to those observed in the tyrosine-kinase inhibitor (TKI) era. Indeed, the introduction of immune checkpoint inhibitors (ICIs) alone or in combination has been associated with the development of immune-related adverse events (irAEs) involving multiple-organ systems which, even if rarely, had led to fatal outcomes. Moreover, due to the relatively recent addition of ICIs to the previously available treatments, the potential additive adverse effects of these combinations are still unknown. A prompt recognition and management of these toxicities currently represents a fundamental issue in oncology, since it correlates with the outcome of cancer patients. Even if clinical guidelines provide indications for the management of irAEs, no specific protocol to evaluate the individual risk of developing an adverse event during therapy is currently available. A multidisciplinary approach addressing appropriate interventions aimed at reducing the risk of any insidious, severe, and/or dose-limiting toxicity might represent the most efficacious strategy to timely prevent and manage severe irAEs, allowing indirectly to improve both patients' cancer-specific survival and quality of life. In this review, we reported a five-case series of toxicity events that occurred at our center during treatment for mRCC followed by the remarks of physicians from different specialties, pinpointing the relevant role of an integrated and extended multidisciplinary team in a modern model of mRCC patient management

    Practical and clinical utility of non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine. A post hoc analysis of the randomized, sham-controlled, double-blind PRESTO trial

    Get PDF
    Background: The PRESTO study of non-invasive vagus nerve stimulation (nVNS; gammaCoreÂź) featured key primary and secondary end points recommended by the International Headache Society to provide Class I evidence that for patients with an episodic migraine, nVNS significantly increases the probability of having mild pain or being pain-free 2 h post stimulation. Here, we examined additional data from PRESTO to provide further insights into the practical utility of nVNS by evaluating its ability to consistently deliver clinically meaningful improvements in pain intensity while reducing the need for rescue medication. Methods: Patients recorded pain intensity for treated migraine attacks on a 4-point scale. Data were examined to compare nVNS and sham with regard to the percentage of patients who benefited by at least 1 point in pain intensity. We also assessed the percentage of attacks that required rescue medication and pain-free rates stratified by pain intensity at treatment initiation. Results: A significantly higher percentage of patients who used acute nVNS treatment (n = 120) vs sham (n = 123) reported a ≄ 1-point decrease in pain intensity at 30 min (nVNS, 32.2%; sham, 18.5%; P = 0.020), 60 min (nVNS, 38.8%; sham, 24.0%; P = 0.017), and 120 min (nVNS, 46.8%; sham, 26.2%; P = 0.002) after the first attack. Similar significant results were seen when assessing the benefit in all attacks. The proportion of patients who did not require rescue medication was significantly higher with nVNS than with sham for the first attack (nVNS, 59.3%; sham, 41.9%; P = 0.013) and all attacks (nVNS, 52.3%; sham, 37.3%; P = 0.008). When initial pain intensity was mild, the percentage of patients with no pain after treatment was significantly higher with nVNS than with sham at 60 min (all attacks: nVNS, 37.0%; sham, 21.2%; P = 0.025) and 120 min (first attack: nVNS, 50.0%; sham, 25.0%; P = 0.018; all attacks: nVNS, 46.7%; sham, 30.1%; P = 0.037). Conclusions: This post hoc analysis demonstrated that acute nVNS treatment quickly and consistently reduced pain intensity while decreasing rescue medication use. These clinical benefits provide guidance in the optimal use of nVNS in everyday practice, which can potentially reduce use of acute pharmacologic medications and their associated adverse events. Trial registration: ClinicalTrials.gov identifier: NCT02686034

    Image-guided ToF depth upsampling: a survey

    Get PDF
    Recently, there has been remarkable growth of interest in the development and applications of time-of-flight (ToF) depth cameras. Despite the permanent improvement of their characteristics, the practical applicability of ToF cameras is still limited by low resolution and quality of depth measurements. This has motivated many researchers to combine ToF cameras with other sensors in order to enhance and upsample depth images. In this paper, we review the approaches that couple ToF depth images with high-resolution optical images. Other classes of upsampling methods are also briefly discussed. Finally, we provide an overview of performance evaluation tests presented in the related studies

    A New Proposal to Register Range Images

    No full text
    Reconstruction of three-dimensional models is an important topic in computer vision. Range finders only let to reconstruct a partial view of the object. However, in most part of applications a full reconstruction is required. Many authors have proposed several techniques to register 3D surfaces from multiple views. The principal problem is to obtain the transformation matrix that aligns all views. This paper briefly comments the most important Range Image registration techniques. Furthermore, a proposal to fusion several range images is presented, including experimental results

    Your Brain on the Movies: A Computational Approach for Predicting Box-office Performance from Viewer’s Brain Responses to Movie Trailers

    No full text
    The ability to anticipate the population-wide response of a target audience to a new movie or TV series, before its release, is critical to the film industry. Equally important is the ability to understand the underlying factors that drive or characterize viewer’s decision to watch a movie. Traditional approaches (which involve pilot test-screenings, questionnaires, and focus groups) have reached a plateau in their ability to predict the population-wide responses to new movies. In this study, we develop a novel computational approach for extracting neurophysiological electroencephalography (EEG) and eye-gaze based metrics to predict the population-wide behavior of movie goers. We further, explore the connection of the derived metrics to the underlying cognitive processes that might drive moviegoers’ decision to watch a movie. Towards that, we recorded neural activity—through the use of EEG—and eye-gaze activity from a group of naive individuals while watching movie trailers of pre-selected movies for which the population-wide preference is captured by the movie’s market performance (i.e., box-office ticket sales in the US). Our findings show that the neural based metrics, derived using the proposed methodology, carry predictive information about the broader audience decisions to watch a movie, above and beyond traditional methods. In particular, neural metrics are shown to predict up to 72% of the variance of the films’ performance at their premiere and up to 67% of the variance at following weekends; which corresponds to a 23-fold increase in prediction accuracy compared to current neurophysiological or traditional methods. We discuss our findings in the context of existing literature and hypothesize on the possible connection of the derived neurophysiological metrics to cognitive states of focused attention, the encoding of long-term memory, and the synchronization of different components of the brain’s rewards network. Beyond the practical implication in predicting and understanding the behavior of moviegoers, the proposed approach can facilitate the use of video stimuli in neuroscience research; such as the study of individual differences in attention-deficit disorders, and the study of desensitization to media violence
    • 

    corecore