3 research outputs found

    Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi

    Get PDF
    A wide diversity of fungi have been detected in the human gastrointestinal (GI) tract with the potential to provide or influence important functions. However, many of the fungi most commonly detected in stool samples are also present in food or the oral cavity. Therefore, to recognize which gut fungi are likely to have a sustained influence on human health, there is a need to separate transient members of the GI tract from true colonizers. To identify colonizing fungi, the eukaryotic rRNA operon’s second internal transcribed spacer (ITS2) was sequenced from the stool, saliva, and food of healthy adults following consumption of different controlled diets. Unlike most bacterial 16S rRNA genes, the only fungal ITS2 operational taxonomic units (OTUs) detected in stool DNA across multiple diets were also present in saliva and/or food. Additional analyses, including culture-based approaches and sequencing of the 18S rRNA gene, ITS2 cDNA, and DNA extracted using alternative methods, failed to detect additional fungi. Two abundant fungi, Saccharomyces cerevisiae and Candida albicans, were examined further in healthy volunteers. Saccharomyces became undetectable in stool when a S. cerevisiae-free diet was consumed, and the levels of C. albicans in stool were dramatically reduced by more frequent cleaning of teeth. Extremely low fungal abundance, the inability of fungi to grow under conditions mimicking the distal gut, and evidence from analysis of other public datasets further support the hypothesis that fungi do not routinely colonize the GI tracts of healthy adults

    Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi

    Get PDF
    A wide diversity of fungi have been detected in the human gastrointestinal (GI) tract with the potential to provide or influence important functions. However, many of the fungi most commonly detected in stool samples are also present in food or the oral cavity. Therefore, to recognize which gut fungi are likely to have a sustained influence on human health, there is a need to separate transient members of the GI tract from true colonizers. To identify colonizing fungi, the eukaryotic rRNA operon’s second internal transcribed spacer (ITS2) was sequenced from the stool, saliva, and food of healthy adults following consumption of different controlled diets. Unlike most bacterial 16S rRNA genes, the only fungal ITS2 operational taxonomic units (OTUs) detected in stool DNA across multiple diets were also present in saliva and/or food. Additional analyses, including culture-based approaches and sequencing of the 18S rRNA gene, ITS2 cDNA, and DNA extracted using alternative methods, failed to detect additional fungi. Two abundant fungi, Saccharomyces cerevisiae and Candida albicans, were examined further in healthy volunteers. Saccharomyces became undetectable in stool when a S. cerevisiae-free diet was consumed, and the levels of C. albicans in stool were dramatically reduced by more frequent cleaning of teeth. Extremely low fungal abundance, the inability of fungi to grow under conditions mimicking the distal gut, and evidence from analysis of other public datasets further support the hypothesis that fungi do not routinely colonize the GI tracts of healthy adults

    Distinct gene expression profiles between human preterm-derived and adult-derived intestinal organoids exposed to \u3ci\u3eEnterococcus faecalis\u3c/i\u3e: a pilot study

    Get PDF
    We read with interest the study by Kayisoglu et al1 comparing the gene expression between embryo-derived and adult-derived intestinal organoids. Some innate immune system genes were differentially expressed between the two organoid types, suggesting a potential role of exposure to the environment, including gut microbiota, in shaping the intestinal gene expression. In extremely preterm infants (\u3c32 weeks gestation), microbial–host interaction at the epithelial surface has been associated with various morbidities including late onset sepsis and necrotising enterocolitis.2 Thus, preterm intestinal organoids may provide a specific and robust model for this population
    corecore