16 research outputs found

    Thermodynamics of Relativistic Fermions with Chern-Simons Coupling

    Full text link
    We study the thermodynamics of the relativistic Quantum Field Theory of massive fermions in three space-time dimensions coupled to an Abelian Maxwell-Chern-Simons gauge field. We evaluate the specific heat at finite temperature and density and find that the variation with the statistical angle is consistent with the non-relativistic ideas on generalized statistics.Comment: 12 pages, REVTe

    Transitions in the Horizontal Transport of Vertically Vibrated Granular Layers

    Full text link
    Motivated by recent advances in the investigation of fluctuation-driven ratchets and flows in excited granular media, we have carried out experimental and simulational studies to explore the horizontal transport of granular particles in a vertically vibrated system whose base has a sawtooth-shaped profile. The resulting material flow exhibits novel collective behavior, both as a function of the number of layers of particles and the driving frequency; in particular, under certain conditions, increasing the layer thickness leads to a reversal of the current, while the onset of transport as a function of frequency occurs gradually in a manner reminiscent of a phase transition. Our experimental findings are interpreted here with the help of extensive, event driven Molecular Dynamics simulations. In addition to reproducing the experimental results, the simulations revealed that the current may be reversed as a function of the driving frequency as well. We also give details about the simulations so that similar numerical studies can be carried out in a more straightforward manner in the future.Comment: 12 pages, 18 figure

    Bestimmung des Diffusions- und Permeabilitaetsverhaltens von Wasserstoff in Steinsalz und kompaktiertem Salzgrus Abschlussbericht

    No full text
    In order to provide basic data for the evaluation of hydrogen transport behaviour in ultimate storage facilities, the permeability and diffusion of hydrogen in rock salt and in compacted salt gravel have been investigated as a function of praxis relevant influencing parameters: Compaction conditions, porosity, mineralogical and chemical composition, grain size, grain size distribution, moisture content, temperature. Depending on the rock salt properties, hydrogen transport is governed by either permeation or normal diffusion, while the influence by Knudsen diffusion can be neglected. Binary diffusion coefficient have been calculated from Fick's law, and permeability data are described by the Darcy equation. Results are discussed with respect to their relevance for an utlimate storage of radioactive wastes. (WEN)SIGLEAvailable from TIB Hannover: F96B1045+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany)DEGerman

    Imaging the brain during sniffing: a pilot fMRI study

    No full text
    Whilst the act of sniffing can provide us with an indirect method to study the central mechanisms of respiratory control, functional neuroimaging now provides us with a tool to directly visualise the activity of the human brain during this voluntary action using functional magnetic resonance imaging (fMRI). We performed fMRI during sniffing in 11 healthy volunteers where all subjects executed single, brisk sniffs of around 60% of their maximum sniff pressure at intervals of approximately every 20s. Simultaneous nasal pressure and chest movements were also measured during the task and a statistical parametric map of activation correlating with the sniff manoeuvre was calculated. A bilateral cortical and subcortical sensorimotor network was activated. The activations were localised within the primary sensorimotor cortex, lateral premotor cortex, supplementary motor area, anterior cingulate, insula, basal ganglia, thalami, mesencephalon, upper pons, cerebellar vermis, piriform cortex, entorhinal cortex and parahippocampal gyrus. The activated brain areas identified, i.e. the cortical and subcortical respiratory network, are similar to those described in other neuroimaging studies of voluntary inspiration. Sniffing is a component of olfactory processing and activations of the olfaction-related cortical areas were also observed in our study. The results of our study show that event-related fMRI can be successfully used to study sniffing. This provides a novel approach to our study of the central neural control of respiratio
    corecore