1,624 research outputs found

    Accuracy of Electronic Wave Functions in Quantum Monte Carlo: the Effect of High-Order Correlations

    Full text link
    Compact and accurate wave functions can be constructed by quantum Monte Carlo methods. Typically, these wave functions consist of a sum of a small number of Slater determinants multiplied by a Jastrow factor. In this paper we study the importance of including high-order, nucleus-three-electron correlations in the Jastrow factor. An efficient algorithm based on the theory of invariants is used to compute the high-body correlations. We observe significant improvements in the variational Monte Carlo energy and in the fluctuations of the local energies but not in the fixed-node diffusion Monte Carlo energies. Improvements for the ground states of physical, fermionic atoms are found to be smaller than those for the ground states of fictitious, bosonic atoms, indicating that errors in the nodal surfaces of the fermionic wave functions are a limiting factor.Comment: 9 pages, no figures, Late

    Angular Momentum and Energy-Momentum Densities as Gauge Currents

    Get PDF
    If we replace the general spacetime group of diffeomorphisms by transformations taking place in the tangent space, general relativity can be interpreted as a gauge theory, and in particular as a gauge theory for the Lorentz group. In this context, it is shown that the angular momentum and the energy-momentum tensors of a general matter field can be obtained from the invariance of the corresponding action integral under transformations taking place, not in spacetime, but in the tangent space, in which case they can be considered as gauge currents.Comment: RevTeX4, 7 pages, no figures. Presentation changes; version to appear in Phys. Rev.

    General reference frames and their associated space manifolds

    Full text link
    We propose a formal definition of a general reference frame in a general spacetime, as an equivalence class of charts. This formal definition corresponds with the notion of a reference frame as being a (fictitious) deformable body, but we assume, moreover, that the time coordinate is fixed. This is necessary for quantum mechanics, because the Hamiltonian operator depends on the choice of the time coordinate. Our definition allows us to associate rigorously with each reference frame F, a unique "space" (a three-dimensional differentiable manifold), which is the set of the world lines bound to F. This also is very useful for quantum mechanics. We briefly discuss the application of these concepts to G\"odel's universe.Comment: 14 pages in standard 12pt format. v2: Discussion Section 4 reinforced, now includes an application to G\"odel's universe

    Inter-dimensional Degeneracies in van der Waals Clusters and Quantum Monte Carlo Computation of Rovibrational States

    Get PDF
    Quantum Monte Carlo estimates of the spectrum of rotationally invariant states of noble gas clusters suggest inter-dimensional degeneracy in N1N-1 and N+1N+1 spacial dimensions. We derive this property by mapping the Schr\"odinger eigenvalue problem onto an eigenvalue equation in which DD appears as a continuous variable. We discuss implications for quantum Monte Carlo and dimensional scaling methods

    Spinor fields without Lorentz frames in curved spacetime using complexified quaternions

    Full text link
    Using complexified quaternions, a formalism without Lorentz frames, and therefore also without vierbeins, for dealing with tensor and spinor fields in curved spacetime is presented. A local U(1) gauge symmetry, which, it is speculated, might be related to electromagnetism, emerges naturally.Comment: 14 pages; v2: minor corrections; v3: note added concerning unified treatment of local Lorentz transformations and local U(1) gauge transformations; v4: published in J. Math. Phys. 50 083507 (2009

    The quantum dilogarithm and representations quantum cluster varieties

    Full text link
    We construct, using the quantum dilogarithm, a series of *-representations of quantized cluster varieties. This includes a construction of infinite dimensional unitary projective representations of their discrete symmetry groups - the cluster modular groups. The examples of the latter include the classical mapping class groups of punctured surfaces. One of applications is quantization of higher Teichmuller spaces. The constructed unitary representations can be viewed as analogs of the Weil representation. In both cases representations are given by integral operators. Their kernels in our case are the quantum dilogarithms. We introduce the symplectic/quantum double of cluster varieties and related them to the representations.Comment: Dedicated to David Kazhdan for his 60th birthday. The final version. To appear in Inventiones Math. The last Section of the previous versions was removed, and will become a separate pape

    On gravitational flow in the Relativistic Theory of Gravitation

    Get PDF
    A definition of the gravitational flow and a short description of the recipe of its calculation are presented.Comment: 6 page

    Nonlinear wave interactions in quantum magnetoplasmas

    Get PDF
    Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.Comment: 15 pages, to appear in Physics of Plasma

    Breaking so(4) symmetry without degeneracy lift

    Full text link
    We argue that in the quantum motion of a scalar particle of mass "m" on S^3_R perturbed by the trigonometric Scarf potential (Scarf I) with one internal quantized dimensionless parameter, \ell, the 3D orbital angular momentum, and another, an external scale introducing continuous parameter, B, a loss of the geometric hyper-spherical so(4) symmetry of the free motion can occur that leaves intact the unperturbed {\mathcal N}^2-fold degeneracy patterns, with {\mathcal N}=(\ell +n+1) and n denoting the nodes number of the wave function. Our point is that although the number of degenerate states for any {\mathcal N} matches dimensionality of an irreducible so(4) representation space, the corresponding set of wave functions do not transform irreducibly under any so(4). Indeed, in expanding the Scarf I wave functions in the basis of properly identified so(4) representation functions, we find power series in the perturbation parameter, B, where 4D angular momenta K\in [\ell , {\mathcal N}-1] contribute up to the order \left(\frac{2mR^2B}{\hbar^2}\right)^{{\mathcal N}-1-K}. In this fashion, we work out an explicit example on a symmetry breakdown by external scales that retains the degeneracy. The scheme extends to so(d+2) for any d.Comment: Prepared for the proceedings of the conference "Lie Theory and Its Applications In Physics", June 17-23, 2013, Varna, Bulgari

    Proper time and path integral representations for the commutation function

    Full text link
    On the example of the quantized spinor field, interacting with arbitrary external electromagnetic field, the commutation function is studied. It is shown that a proper time representation is available in any dimensions. Using it, all the light cone singularities of the function are found explicitly, generalizing the Fock formula in four dimensions, and a path integral representation is constructed.Comment: 20 pages, LaTeX, uses pictex macro
    corecore